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Abstract 

Disruption of Intestinal Th17 Signaling & the Microbiome Exacerbates Extra-Intestinal 
Pathologies 

 
Patricia Andrea Concepcion Castillo, PhD 

 
University of Pittsburgh, 2019 

 
 
 
 

IL-17 signaling to the intestinal epithelium is a critical regulator of the intestinal 

microbiome. There is a growing body of research linking alterations in both Th17 cells and the 

intestinal microbiome to extra-intestinal pathologies including hepatitis and neuroinflammation.  

For example, many patients with autoimmune, fulminant, and viral hepatitis exhibit increased 

systemic IL-17, and Il17ra-\- mice are protected in concanavalin A (Con A)-induced hepatitis, a 

murine model of immune-mediated hepatitis. In Multiple Sclerosis (MS), elevated IL-17 was 

found in CNS lesions, and disrupted Th17 differentiation in mice ameliorates disease in the 

experimental autoimmune encephalomyelitis (EAE) mouse model of MS. In addition, many 

patients with hepatitis and MS display an altered intestinal microbiome, and germ-free mice as 

well antibiotic-treated mice have decreased disease in Con A hepatitis and EAE. Despite these 

data, few studies have investigated how the relationship between enteric Th17 cells and the 

microbiome influences extra-intestinal pathologies. 

Based on these reported links, we hypothesized that intestinal IL-17R signaling plays a 

critical role in mitigating hepatic and neuroinflammation. To test this, we generated intestinal 

epithelial specific IL-17RA knockout mice (Il17rafl/fl x villin cre+ mice). Because enteric Th17 

signaling regulates the commensal microbiota, these mice exhibited an altered intestinal 

microbiome along with a subsequent expansion of intestinal Th17 cells. We then tested these mice 

in the Con A hepatitis model and EAE neuroinflammation model.  



 v 

Our results showed that perturbation of intestinal IL-17RA signaling was sufficient to 

exacerbate both liver and neuroinflammation in a microbiome-dependent manner. Abrogation of 

intestinal IL-17RA disrupted the intestinal microbiota and promoted translocation of bacterial 

products to the liver. Together, this induced IL-18 production and subsequent lymphocyte 

activation and cell death to worsen hepatitis. In EAE, intestinal IL-17RA deficiency induced 

intestinal dysbiosis and increased intestinal Il17 and Csf2 and systemic responses in both 

cytokines. Preliminary data suggested a potential increase of inflammatory monocyte infiltration 

into the CNS, together exacerbating disease. These dissertation studies elucidate the differential 

role of enteric Th17 cells and the microbiome in extra-intestinal pathologies and more broadly in 

mucosal immunology. Moreover, it provides insight into novel therapeutic strategies that target 

the gut-liver and gut-brain axes. 
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1.0 Introduction 

Parts of this introduction have been adapted from the publication:  

Castillo, P. A. C., and T. W. Hand. 2018. A little fiber goes a long way. Immunity 48: 844–846. 

 

One of the underlying drivers of this work was the idea that the immunologic interaction 

between different organ systems and how this impacts health and disease is an understudied but 

critical avenue by which to advance science. As such, the projects detailed within this dissertation 

investigate the gut-liver and gut-central nervous system axes in the context of liver and neuro-

inflammation. This focus stemmed from the rapidly growing body of literature describing how the 

intestinal microbiome had implications beyond the gut. In addition, ongoing research in 

laboratories including the Kolls lab were showing that the intestinal microbiome actually had a 

reciprocal regulatory relationship with T helper 17 (Th17) cells, a subset of T helper cells 

implicated in a wide range of diseases. The synthesis of these findings led to the overarching 

hypothesis of this thesis—Disruption of intestinal Th17 signaling and subsequent effects on the 

microbiome contribute to extra-intestinal pathologies. 
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1.1 Intestinal Th17 Signaling 

1.1.1  Interleukin 17 (IL-17) and IL-17 Receptor 

IL-17 and IL-17 receptor A (IL-17RA) were first cloned over two decades ago by Rouvier 

et al. and Yao et al., respectively (1, 2). This ultimately led to the identification of a new class of 

T helper (Th) cells, Th17 cells, that was separate from the established Th1/Th2 lineages (3). 

Identification of Th17 cells as a distinct subset was prompted by the observation that the Th1/Th2 

dichotomy could not fully explain inconsistencies observed in some autoimmune and infectious 

pathologies (3).  Almost 10 years since the discovery of IL-17, data from multiple labs showed 

that specific cytokines including IL-23, TGFβ, IL-21, and IL-6 could promote Th17 differentiation 

(4–10). Concurrently, Th17 master transcription factor retinoic acid-related orphan receptor 

gamma T (Rorγt) was identified and found to be mediated by STAT3 (11–14). Since the initial 

discovery of the founding ligand: receptor relationship, five IL-17R family members (IL-17RA-

E) and six ligands (IL-17A-F) have been identified (15). The first ligand and receptor cloned, IL-

17A and IL-17RA, are the most well described and are a larger focus of these studies.  

IL-17RA is a type I transmembrane protein with a 293 amino acid extracellular domain, 

21 amino acid transmembrane domain, and a 525 amino acid cytoplasmic tail (2). It functions in 

multimeric complexes, such as a multimeric complex with IL-17RC and itself and a dimeric 

complex with IL-17RB or IL-17RD (15). It remains undetermined whether these receptors reside 

on the surface as monomers and form complexes in a ligand-dependent manner or if they reside 

on the surface as preformed complexes independent of ligand (15). IL-17RA is ubiquitously 

expressed in many tissues. mRNA expression was identified in the intestine, lung, spleen, and 

kidney (12). At the cellular level, expression was observed in leukocytes, epithelium, endothelium, 
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fibroblasts, and some myeloid cells (2, 12, 13). While Il17ra expression is observed in 

hematopoietic cells, most functional effects of IL-17A and IL-17F through IL-17RA have largely 

been documented in non-hematopoietic cells such as the epithelium (15, 16). This is indeed one 

reason why the following dissertation studies targeted IL-17R signaling specifically in the 

intestinal epithelium as a means to investigate role of IL-17R signaling in the intestine.  

IL-17A is a 155 amino acid, disulfide-linked homodimeric glycoprotein (2). It is capable 

of signaling through IL-17RA and IL-17RC as a homodimer or heterodimer with IL-17F, which 

shares over 40% homology with IL-17A (12, 15). However, the affinity of the IL-17A homodimer 

for the IL-17R receptor is greater than that of the IL-17A-F heterodimer or IL-17F homodimer 

(17). Similar to the receptor, Il17a is expressed by multiple cell types including T cells, NK cells, 

innate lymphoid cells, and lymphoid tissue inducer cells (15, 18).  

Activation of the IL-17R by IL-17 induces the NFκβ pathway and alternatively, the 

C/EBPβ and C/EBPδ pathways (16). Signaling results in transcriptional regulation, such as the 

induction of Lcn2 (19), and mRNA stability regulation as with Cxcl1 and Cxcl5 (20–22). As such, 

IL-17 signaling can result in a wide range of downstream inflammatory processes. With this in 

mind, the general consequences of IL-17 can largely be broken down into five categories: 1. 

Proinflammatory chemokine release (CXCL9, CXCL10, CCL2, CCL20), 2. Hematopoietic 

cytokine production (IL-6, TNF, G-CSF, GM-CSF, etc.), 3. Upregulation of acute phase response 

genes (Serum amyloid A, CRP, Lipocalin), 4. Induction of anti-microbial factors (Defensins, S100 

proteins, sIgA, etc.), and 5. Proliferation of epithelial and lymph node stromal cells (16, 23). As 

expected, these effects can have massive consequences on the immune system and therefore must 

be regulated.  
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Table 1-1. Experimental Assays Used to Measure Th17 Responses in Current Dissertation Studies 

RNA-based Assays Protein-based Assays 
Quantitative Real Time Polymerase Chain 

Reaction (qRT-PCR) 
Enzyme-linked Immunosorbent Assay 

(ELISA) 
Single Cell RNA sequencing Luminex 

 Flow Cytometry 
 

 

There are a number of factors upstream of Th17 signaling that help regulate Th17 responses 

(18). For example, IL-27 has been shown to inhibit IL-17 release and protect against autoimmunity 

(24, 25). Conversely, IL-21 is a cytokine produced by Th17 cells that promotes Th17 generation 

in an autocrine fashion (6). IL-23 is required for maintenance of Th17 responses in vivo (26), but 

can also favor more pathogenic Th17 responses as described in the next section (27–29). 

1.1.2  Pathogenic and Non-Pathogenic Th17 Cells 

More recent work has suggested that Th17 cells can be subcategorized as pathogenic versus 

non-pathogenic based on cytokine production. While IL-17 is a hallmark cytokine of Th17 cells, 

these cells also secrete other cytokines such as IL-21, IL-22, IFNγ, and GM-CSF. The more 

“pathogenic” Th17 cells are characterized by their ability to double produce IL-17 and IFNγ or IL-

17 and GM-CSF (28). Different inflammatory milieus support the differentiation of pathogenic 

and non-pathogenic Th17 cells as seen in Table 1-2 (30).  

 

 

 



 5 

Table 1-2. Pathogenic & Non-Pathogenic Th17 Differentiation 

 Cytokines that promote 
differentiation of Th17 Cells 

Non-Pathogenic TGFβ1 and IL-6 

Pathogenic 
1. TGFβ1, IL-6, IL-23 
2. TGFβ3, IL-6 
3. IL-1β, IL-6, IL-23 

 

 

TGFβ1 and IL-6 together induce a non-pathogenic Th17 cell while three different 

combinations have been shown to induce pathogenic Th17 cells: [l] TGFβ1, IL-6, IL-23; [2] 

TGFβ3, IL-6; [3] IL-1β, IL-6, IL-23(30). These categories have been defined by in vivo functional 

studies where pathogenic Th17 cells were shown to exacerbate disease in the experimental 

autoimmune encephalomyelitis (EAE) model of MS (30). More specifically, adoptive transfer of 

naïve myelin oligodendrocyte glycoprotein-specific cells differentiated in the “pathogenic” 

conditions listed in Table 1-2 resulted in exacerbated disease as compared to disease induction by 

cells differentiated in non-pathogenic conditions (28). There are now ongoing studies in other 

diseases such as rheumatoid arthritis investigating the potential role of these “pathogenic” Th17 

cells (31). However, these studies are partially biased by the use of systems that are inherently 

self-reactive. If these cells bore an anti-pathogen specific TCR, it may be the case that 

“pathogenic” Th17 may be more effective in host defense.   

1.1.3  Th17 Cells and Maintenance of Intestinal Homeostasis 

It is important to note that while Th17 cells have been subcategorized as pathogenic and 

non-pathogenic, consequences of Th17 cell activation are contextual and can be detrimental or 
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beneficial depending on the circumstance. This is because Th17 cell signaling has a wide variety 

of immune consequences including neutrophil recruitment, chemokine release, and more. In the 

context of these studies, a major interest in its function lies in the role of Th17 cells in maintaining 

intestinal homeostasis.  

The intestine is a very complex dynamic environment that must be able to balance 

tolerogenic and inflammatory responses to an array of antigens, both external and otherwise. There 

is constant exposure to food antigens, external pathogens, and the intestinal microbiota, comprising 

of the more than 1014 microbes inhabiting the intestine (32). While the microbiome will be 

discussed in more detail later, it is important to note that the microbiota are key drivers of T cell 

development in the intestinal lamina propria. Indeed, germ-free mice exhibit decreased lamina 

propria lymphocytes (33). However, left uncontrolled, the microbiota can have detrimental effects. 

Therefore, the body has built a “mucosal firewall” to help regulate and contain the microbiota and 

aforementioned factors to promote intestinal homeostasis (Figure 1-1) (34). Evidence suggests that 

the most immunogenic bacteria are those that gain access to the epithelial layer (35). Indeed, 

known immunogenic bacteria segmented filamentous bacteria (Sfb) actually require adhesion to 

the intestinal epithelium to exert its effects (36). The mucosal firewall helps prevent access to the 

host through the physical intestinal epithelium as well as the overlying mucus layer, antimicrobial 

peptides, and secretory IgA (34). Actions of IL-17 and IL-22, another hallmark Th17 cytokine, on 

the intestinal epithelium contribute largely to these elements.  

IL-22 is an IL-10 family member produced by numerous cells types including T cells, NK 

cells, and ILCs (37). It signals through a dimeric receptor complex comprised of IL-22RA1 and 

IL-10R2 (38). While IL-22RA1 is localized on other cell types such as hepatocytes, within the  
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Figure 1-1. Intestinal Th17 Cells Contribute to the Mucosal Firewall. 

Intestinal T helper 17 (Th17) cells contribute to the mucosal firewall in multiple ways. Production of interleukin 17 

(IL-17) and binding of IL-17 to the IL-17 receptor (IL-17R) promote polymeric immunoglobulin receptor (pIgR) 

expression, which transports dimeric IgA from B cells across the intestinal epithelium to be secreted into the intestinal 

lumen as secretory IgA (sIgA). Interleukin 22 (IL-22), another hallmark Th17 cytokine, binds to the IL-22 receptor 

(IL-22R) on the intestinal epithelium to promote mucin production by goblet cells. In addition, both IL-17 and IL-22 

affect tight junction proteins between enterocytes and promote antimicrobial peptide release, specific examples 

including alpha defensins (α-defensins) and Regenerating islet-derived 3 gamma (Reg3γ), respectively. *Images 

adapted from Servier Medical Art by Servier. Original images are licensed under a Creative Commons Attribution 

3.0 Unported License (https://creativecommons.org/licenses/by/3.0/legalcode).  
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intestine, the IL-22RA1 subunit is limited to the epithelial cells, restricting the consequences of 

enteric IL-22 signaling to the intestinal epithelium (39).  

There are data  in vivo and in vitro demonstrating that IL-17 and IL-22 regulate intestinal 

barrier integrity. IL-17 affects tight junction complexes between enterocytes through alterations of 

tight junction proteins such as occludens (40). Specifically, in a mouse model of acute intestinal 

injury, IL-17 from gamma delta T cells contributed to barrier integrity in an IL-23-independent 

manner (40). Conversely, IL-22 has been shown to alter intestinal permeability by promoting 

Claudin 2 expression in the intestinal epithelium through the JAK/STAT pathway (41). In vitro 

treatment of Caco2 cells with IL-22 in a transwell system reduced transepithelial resistance, 

suggesting that IL-22 enhances permeability of colonic epithelial cells (41). In addition to affecting 

tight junctions, there is also evidence in a mouse model of colitis showing that IL-22 enhances 

mucus production from goblet cells, thereby fortifying the mucus barrier above the enterocytes 

(42). Moreover, IL-22 supports intestinal epithelial stemness independent of Paneth cells to induce 

epithelial regeneration and maintain barrier integrity (43).  

Beyond the physical intestinal barrier, IL-17 and IL-22 induce strong antimicrobial peptide 

(AMP) responses. Antimicrobial peptides promote bacterial killing by both enzymatically and 

non-enzymatically targeting cell wall structures and synthesis, as well as assisting with detection 

and response by the immune system (44). Alpha defensins are a subset of AMPs expressed by 

small intestinal Paneth cells (44). In mice, they are produced as pro-alpha defensins and stored in 

intracellular secretory granules where they are cleaved to active alpha-defensins exclusively by 

matrix metalloproteinase 7 (45). Following exocytosis, alpha-defensins target the bacterial 

membrane and are critical in maintaining the intestinal microbiota and protecting against bacterial 

invasion (44). For example, transgenic mice expressing human alpha defensin 5 exhibit baseline 
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changes in the composition of the intestinal microbiota and are protected against oral Salmonella 

infection (46, 47). Kumar et al. showed that global knockout of IL-17A and global or intestinal-

specific knockout of IL-17RA dramatically decreased alpha defensins in the intestine (48), 

suggesting that IL-17 regulates intestinal AMPs. Regenerating islet-derived 3 gamma (Reg3γ), 

another type of intestinal AMP, is a soluble lectin induced by IL-22 (49, 50). Colonization of 

bacteria into germ-free mice actually induced secretion of Reg3γ into the intestinal lumen where 

it bound gram-positive bacteria, demonstrating a regulatory relationship between bacteria and host 

(51). This relationship has implications beyond the intestine as well; McAleer et al. showed that 

oral supplementation of  Reg3γ in Il22-/- mice protected them from pulmonary inflammation 

induced by Aspergillus fumigatus (52).  

Along with AMPs, immunoglobulin A (IgA) plays a large role in regulating the intestinal 

microbiota. IgA is secreted into the intestinal lumen through the polymeric immunoglobulin 

receptor (pIgR) (53). More specifically, dimeric IgA from plasma cells is transported across 

intestinal epithelial cells through pIgR. Cleavage of pIgR near the apical membrane releases both 

the secretory component of pIgR and the bound dimeric IgA into the lumen, together forming 

secretory IgA (sIgA) (53). pIgR is upregulated by Th17 cells in vivo (54). Indeed, both global and 

intestinal-specific knockout of IL-17R resulted in decreased levels of intestinal pIgR and sIgA (48, 

54). Moreover, both IgA deficient mice and pIgR knockout mice exhibited an altered commensal 

microbiome (55, 56). These data suggest that IL-17 also regulates the intestinal microbiome 

through its role in pIgR expression and sIgA release.  

Taken together, these studies demonstrate that intestinal homeostasis is maintained in large 

part by Th17 hallmark cytokines that reinforce the mucosal firewall. Given this role, it is not 

surprising that Th17 cell signaling is predominantly involved in constraining microbes residing 
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close to the intestinal epithelium, thus playing a prominent role in regulating the intestinal 

microbiome. 

1.2 Intestinal Microbiome 

As previously mentioned, there are over 1014 bacteria residing in the intestine, with 

increasing bacterial concentrations from the duodenum to the colon (32). The outdated view of the 

intestinal microbiota was that there were pathogenic and nonpathogenic bacteria. While there are 

indeed certain pathogens whose presence in the intestine will undoubtedly cause illness, the 

understanding of the field has moved from a dichotomy of “good versus bad” bacteria to the idea 

that a “healthy” microbiota is more about balance. Indeed, bacterial diversity indices are common 

descriptive measures used in microbiome studies with increased diversity often, but not always, 

correlating with health (57–59). More research is also emerging detailing regulatory mechanisms 

between the host and microbiome. For example, Sfb induces Th17 cells, which then work to 

constrain the Sfb population (36, 48, 60). In these ways, balance in terms of both the composition 

of the microbiota and in host-microbiome interactions is required to maintain intestinal 

homeostasis. 

1.2.1  Immunogenic Commensal Bacteria 

There are multiple commensals identified that induce intestinal immune responses. For 

example, Clostridia spp. and  Bacteroides fragilis have been shown to promote colonic Treg 

responses (61–64), and Sfb induces small intestinal Th17 responses (48, 60). The resulting effects 
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of a particular bacterium, however, are often contextual, not only in terms how its immune 

consequences align with the current health/disease state, but there is also emerging evidence that 

the immune sequelae of a specific bacterium may actually differ depending on the environment it 

is in. To illustrate the first point, Sfb colonization of the intestine and subsequent enteric Th17 

responses (60) were detrimental in neuroinflammation during EAE (48) but associated with 

protection against spontaneous diabetes in nonobese mice (65). Toward the second point, there is 

literature showing that Helicobacter hepaticus induces strong Th1-Th17 responses in an Il10-/- 

model of colitis, but induces T regulatory responses during colitis in IL-10 sufficient mice (66). In 

addition, the commensal Akkermansia muciniphila induced T follicular helper responses in mice 

with an altered Schaedler flora and a complex microbiota, but only induced proinflammatory T 

effector responses in the latter environment (67). Together, these data illustrate how immune and 

bacterial signals present in the gut can dictate the resulting responses to bacteria.  

1.2.2  Bacterial Mechanisms to Influence Host Immune Responses 

Bacteria exert their effects on the host through direct and indirect mechanisms. As 

mentioned above, many known immunogenic bacteria are located close or adhere to the intestinal 

epithelium. In addition to Sfb, Citrobacter rodentium and Escherichia coli O157 are examples of 

microbes that require adhesion to trigger Th17 immune responses. Atarashi et al. showed that these 

bacteria adhere to the intestinal epithelium and induce immune responses, whereas mutants lacking 

the ability to adhere could not induce enteric Th17 responses (36). Direct access to the intestinal 

epithelium allows the bacteria to prompt inflammation through utilization of their own virulence 

factors such as the type three secretion system in Salmonella (68), or via pattern recognition 



 12 

receptor signaling pathways including those of toll like receptors (TLRs) and the NOD-like 

receptors (NLRs) (69).  

Pattern recognition receptors can also be engaged more distantly from the bacteria due to 

release of bacterial products such as lipopolysaccharide (LPS) and unmethylated CpG DNA. These 

products are released during normal bacterial growth, division, and lysis (70, 71). These and other 

inflammatory mediators can also be released via extracellular vesicles. For example, outer 

membrane vesicles (OMVs) are a type of bacterial extracellular vesicle produced by gram-negative 

bacteria through the budding of the bacterial outer membrane along with periplasmic content (72). 

Bacterial OMVs can carry cargo from the bacteria to more distant sites in the body (72). Data has 

shown that there are not only differences in the types of cargo encased in these vesicles, but that 

selection of the cargo is a regulated process (72). As such, OMVs from one bacterium do not 

necessarily exert the same effects as that of another bacterium. For example, OMVs isolated from 

Akkermansia muciniphila, but not E. coli, increased intestinal barrier integrity in Caco2 cells (73). 

Differential effects in bacterial OMVs have been documented in disease as well—OMVs from B. 

fragilis were protective in experimental colitis (74), while OMVs from B. theta were detrimental 

(75). 

Another major mechanism through which bacteria indirectly affect host health and disease 

is bacterial metabolites. Research over the past decade has shown that short-chain fatty acids 

(SCFAs) derived from bacterial fermentation of dietary fiber have anti-inflammatory properties 

(76, 77). Three prominent examples of these SCFAs are acetate, propionate, and butyrate (76). 

These compounds exert their effects through multiple mechanisms, including the binding of G-

coupled Protein receptors, inhibition of Histone deacetylases, and effects on cell metabolism (78). 

SCFAs are capable of signaling to a variety of immune cells including T cells, neutrophils, and 
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macrophages. For example, butyrate has been shown to induce colonic Tregs (79). There are also 

data showing that a high fiber diet and subsequent SCFAs increased CD8+ T cell effector function 

and altered bone marrow hematopoiesis to increase the differentiation of Ly6Cneg patrolling 

monocytes and alternatively activated macrophages (80–82). In addition, SCFAs have been 

associated with a reduction in neutrophil and macrophage activation (76, 78). Interestingly, 

ingestion of dietary fiber also influences bacterial composition and how bacteria can affect health 

and disease. Data has shown that a fiber-deficient diet caused bacteria within the colon to feed on 

the mucus glycoproteins as opposed to the nutrients normally attained from dietary fiber (83). As 

a result, the protective mucus layer was degraded. This changed the bacterial environment and 

indeed altered the composition of the intestinal microbiota to favor mucophilic bacteria (83). It 

also provided greater access to the intestinal epithelium, affording commensal bacteria and 

invading pathogens an additional opportunity by which to directly interact with the host and induce 

immune responses.   

Bile acid metabolism is another arena where bacteria influences human health. Bile acids, 

which are required for lipid metabolism, are made in the liver and stored in the gallbladder. 

Consuming food triggers the release of bile through the bile ducts into the duodenum where it 

facilitates breakdown of lipids. Most bile acids are then recycled back up and stored in the 

gallbladder (84, 85). Bile acids not reabsorbed are metabolized from primary bile acids to 

secondary bile acids by specific intestinal bacteria able to facilitate this conversion (86, 87). This 

switch in bile acid structure allows secondary bile acids to passively diffuse through the colon to 

re-enter the enterohepatic circulation. In addition, secondary bile acids can also affect host 

metabolism though various signaling pathways including through the Farnesoid-X-Receptor 
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(FXR) and TGR5 bile-acid responsive receptors (85, 87, 88). In this way, bile acid metabolism 

allows the intestinal microbiota to indirectly influence host health and metabolism (87).  

As with other aspects of the microbiota previously discussed, there is a host to microbiome 

regulation in bile acid metabolism as well. Changes in bile acid type and amount can favor certain 

bacterial species over others, altering the composition of the intestinal microbiota (87). For 

example, there is evidence that deoxycholate, a bacterial-derived metabolite of bile, promotes 

germination of C. difficile spores (89). Considering the bidirectionality of this and many other 

host-microbiome interactions, disruption of either can often lead to disease.  

 

Table 1-3. Experimental Assays Used to Assess the Microbiome in Current Dissertation Studies 

Assay: Utility in Current Studies: 
Quantitative Real Time Polymerase Chain 
Reaction (qRT-PCR) 

To measure bacterial DNA signal in intestinal 
content and tissues 

16S rRNA Sequencing To describe the relative abundances of 
bacterial communities in a given sample 

Bacterial Culture To assess live bacteria in organs 
Flow Cytometry  To quantify fecal bacterial burden  
Mouse Toll Like Receptor (TLR) Reporter 
Cell Lines 

To quantify the amount of TLR ligands in a 
given biological sample 

1.3 Disruption of Th17 Signaling & the Intestinal Microbiome In Disease 

1.3.1  Intestinal Diseases 

Th17 signaling and the microbiome play an extensive role in intestinal homeostasis. As 

such, perturbations in these factors have been documented in many diseases. In the intestine, these 

factors have been implicated separately in diseases such as inflammatory bowel disease (IBD) and 

colon cancer. In IBD patients, there was an increase in Th17 cells within inflamed tissue biopsies 
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(90). In mouse models of IBD, IL-21 or IL-23 deficiency was protective, though IL-17A deficiency 

was not (90). In models of colorectal cancer (CRC), IL-17 promoted tumor progression, and in 

CRC patients, increased Il17a expression was associated with worse disease outcomes (90). Data 

in CRC also implicates the “Pathogenic” Th17 cell co-expressing IFNγ and IL-17A (91). The 

microbiome composition is also altered in both of these diseases (92, 93). Mouse models supported 

the role of the microbiome in disease pathogenesis as germ free mice were highly susceptible to 

the DSS-colitis model of IBD (94), but were protected in a colitis-associated CRC model (95). 

These are only two examples of how Th17 cells and the intestinal microbiome have been 

implicated in intestinal pathology. Yet within these two examples alone, the contrasting effects of 

IL-17 and the microbiome illustrate the complexity of these two components in disease and further 

reaffirm the contextual nature of their consequences.  

1.3.2  Extra-Intestinal Diseases 

Beyond the intestine, Th17 cells have been linked to a wide range of diseases throughout 

the body. More recently, the microbiome has been associated with extra-intestinal pathologies as 

well. What is especially interesting in the context of these dissertation studies are that many of 

these extra-intestinal diseases that the microbiome has been implicated in have a previously 

described Th17-related component. This ranges from barrier and non-barrier tissues anatomically 

close to the intestine, such as liver and pancreas, to the lung, and even further to immunoprivileged 

sites such as the eye and central nervous system (Figure 1-2).  
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Figure 1-2. Diseases w/ Evidence Implicating Th17 cells & the Intestinal Micrbiome  

*Images adapted from Servier Medical Art by Servier. Original images are licensed under a Creative Commons 

Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/legalcode). 

 

 

Within the abdominal cavity, there have been links to both the pancreas and liver. In the 

pancreas, Zhao et al (2018) integrated human and mouse studies to show that a high fiber diet 

(HFD) selectively caused an increase in SCFA-producing bacteria that were associated with a 

significant reduction in symptoms associated with Type 2 Diabetes (T2D), a disease linked to Th17 

cells and Th17/Treg imbalance (96, 97). In a study by Zhao et al., patients with T2D were treated 

with standard of care therapies supplemented with a regulated HFD and an inhibitor to increase 

the bioavailability of fermentable fiber to intestinal bacteria. These additional interventions 

improved clinical outcomes as measured by hemoglobin A1c and glucose tolerance tests. To 

determine the contribution of the microbiota in their results, fecal transplant from patients into 
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germ-free mice showed that mice receiving stool from HFD patients demonstrated the best 

metabolic outcomes (59). This suggested that the microbiota was the primary mediator of the effect 

of HFD, and that a patient’s microbiota can be manipulated via dietary changes to improve 

metabolic health.   

In the liver, there have been links to non-alcoholic fatty liver disease (NAFLD), alcoholic 

hepatitis, autoimmune hepatitis, hepatocellular carcinoma, and more (98, 99). In NAFLD, which 

includes nonalcoholic fatty liver that can progress to nonalcoholic steatohepatitis, patients 

exhibited increased hepatic Il17 expression and increased Th17 cells in peripheral blood (100). In 

addition, studies showed disease progression in humans was associated with increased hepatic IL-

17-producing CD4+ lymphocytes (101). In mice, Henao-Mejia et al. showed that alterations in the 

inflammasome prompted changes in the composition of the intestinal microbiome, consequently 

exacerbating NAFLD (102). In viral and autoimmune hepatitis, patients exhibited intestinal 

dysbiosis (103, 104) and increased serum IL-17 (105–107). In some mouse models of these 

diseases, manipulation of the microbiome through antibiotics ameliorated liver inflammation 

(108).  Finally, in hepatocellular carcinoma (HCC), the intestinal microbiota and TLR4 signaling 

were required for disease progression in mice (109), which aligned with the increases in bacterial 

translocation seen in patients (110).  

Moving further to the thoracic cavity, Th17 cells and the microbiome have been linked 

lung pathology in asthma, influenza, and fungal infections. In a mouse model of asthma, two 

studies showed that dietary fiber and subsequent bacterial-derived SCFAs decreased disease 

severity by altering macrophage, T cell, and dendritic cell activation (82, 111). In patients, studies 

described a dysbiotic microbiota in both children diagnosed with asthma and at risk for asthma 

(112). Both mouse and patient data have implicated Th17 cells in the pathogenesis of steroid-
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resistant asthma as well (113–115). More specifically, in an adoptive transfer model of allergic 

airway inflammation, steroid treatment was able to ameliorate both inflammation and airway 

hyperresponsiveness during adoptive transfer of Th2-polarized cells but not of Th17-polarized 

cells (116). In humans, increased IL-17 responses were observed from PBMCS of patients with 

steroid-resistant asthma as compared to PMBCs from patients with steroid-sensitive asthma (113, 

115). With regards to infectious agents, there is data suggesting that IL-17RA mediates 

immunopathology during influenza (117). Microbiome involvement in influenza infection has 

been described as well. Marsland and colleagues found that dietary fiber and bacterial-derived 

SCFAs decreased immunopathology and mortality associated with influenza A viral infection by 

increasing CD8+ T cell effector function and altering bone marrow hematopoiesis to increase the 

differentiation of Ly6Cneg patrolling monocytes and alternatively activated macrophages (82). In 

fungal infection, a study by McAleer et al. examined how intestinal Th17 cells and the microbiome 

contributed to pulmonary Aspergillus fumigatus infection. They found that protection against this 

fungal pathogen was dependent on the AMP Reg3γ and Sfb, both factors intimately involved in 

intestinal Th17 cell signaling (52).  

Finally, moving even more distally from the intestine, there are data linking Th17 cells and 

the intestinal microbiome to pathologies in immune privileged sites such as the eye and the central 

nervous system (CNS). In patients with acute uveitis associated with Vogt–Koyanagi–Harada 

(VKH) disease, there were increased serum IL-23 and elevated IL-17 production from stimulated 

PBMCs (118). In a mouse model of experimental autoimmune uveitis (EAU), neutralization of IL-

17 was protective (119, 120). Interestingly, Caspi and colleagues demonstrated that the 

autoreactive T cells responsible for ocular pathology in EAU were actually primed in the intestine 

by commensal antigens, migrated to the eye via the systemic circulation, and cross-reacted with 
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ocular antigens (121, 122). This proposes molecular mimicry as another mechanism by which the 

microbiota can influence disease. As further evidence of the role of the microbiome in autoimmune 

uveitis, treatment with broad-spectrum antibiotics or germ-free rederivation of a spontaneous 

autoimmune uveitis mouse strain ameliorated disease (122).  

In addition to the eye, the central nervous system is another immune privileged site in 

which Th17 cells and the intestinal microbiome have been implicated. Numerous studies have 

described the role of Th17 cells in multiple sclerosis (MS). There are increased levels of IL-17 in 

MS patient serum and CNS lesions (123, 124), and in mice blocking IL-17 globally via neutralizing 

antibodies or genetic knockout ameliorated EAE (125, 126). As further support, neuronal protease 

BACE1 promoted IL-17 production and increased EAE susceptibility (127). Patients with MS also 

exhibit commensal dysbiosis (128). Fecal transplant from MS patients into germ-free mice resulted 

in decreased Tregs and exacerbated EAE as compared to mice receiving normal control feces, 

together suggesting a role for the microbiome in disease severity (129).  

Though Th17 cells and the microbiome have individually been implicated in these diseases, 

few studies have investigated how the extensive relationship between the two contribute to 

pathologies. Thus, the focus of the following chapters will be on investigating this Th17 cell-

microbiome relationship in the context of extra-intestinal diseases, beginning with the gut-liver 

axis, then moving more distally to the gut-brain axis. A more in-depth review of the literature 

specific to those organ systems will be discussed in the respective chapters.  
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2.0 Gut-Liver Axis: Intestinal IL-17R signaling constrains IL-18 driven liver inflammation 

by the regulation of microbiome-derived products 

2.1 Introduction 

2.1.1  Liver Anatomy and Physiology 

The liver is a unique organ in terms of its intimate association with the intestine. To 

appreciate this link, it is important to understand the basic liver anatomy and physiology that 

connect these two organ systems. 

2.1.1.1 Structure and Blood Supply 

The liver is located in the upper right quadrant of the abdominal cavity (Figure 2-1A). The 

human liver typically has four lobes which are comprised of the basic liver structural unit, the 

hepatic lobule (Figure 2-1B). Each lobule has a central vein, which drains blood from the liver and 

empties it into the hepatic vein to the inferior vena cava and heart. Emanating from the central vein 

are specialized capillaries called the liver sinusoids. Surrounding the sinusoids are the hepatocytes, 

which make up most of the cellular density of the liver, and other cell types that reside within the 

liver parenchyma and vasculature. This includes the liver sinusoidal endothelial cells and Kupffer 

cells, specialized macrophages of the liver. These sinusoids connect to the portal triad, which 

includes three components: 1. Bile duct, 2. Hepatic artery, and 3. Portal vein (Figure 2-1C). The 

bile duct connects the liver to the gallbladder nested at the inferior part of the liver, which stores 

the bile produced by the liver. The hepatic artery is a branch of the descending aorta that supplies  
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Figure 2-1. Liver Anatomy 

(A) The liver is located in the upper right quadrant of the abdominal cavity. The hepatic portal circulation drains the 

spleen, pancreas, and gastrointestinal tract from the lower esophagus to the upper anal canal, thereby connecting other 

organs in the abdominal cavity to the liver. (B) Structure of the liver lobule—The hepatic lobule is the basic liver 

structural unit. Each lobule has a central vein, which drains into the hepatic vein, to the inferior vena cava, and then 

to the heart. Emanating from the central vein are specialized capillaries called the liver sinusoids. Surrounding the 

sinusoids are the hepatocytes and other cell types that reside within the liver parenchyma and vasculature. This 

includes Kupffer cells, specialized liver macrophages. The liver sinusoids connect the central vein to the portal triad—

the bile duct, hepatic artery, and portal vein. (C) Inputs and outputs of liver as indicated by arrow direction—Inputs: 

the hepatic artery (25% percent of the liver blood supply); hepatic portal vein (~75% percent of the liver blood supply). 

Outputs: The hepatic vein (drains the central veins of each liver lobule); the common bile duct (releases the bile made 

by the liver and stored in gallbladder into the intestinal lumen).  

A B 

C 
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oxygenated blood to the liver parenchyma via the sinusoids. The hepatic artery supplies about 25% 

of the hepatic blood supply. The remaining 75% comes from the hepatic portal vein which brings 

both nutrients and deoxygenated blood to the liver. This structure creates a dynamic interface at 

the liver lobule that’s a mixture of products derived from hepatic cells, oxygenated blood, 

deoxygenated blood, and the nutrients and other products entering the liver through the portal vein. 

(88, 130, 131) 

2.1.1.2 Hepatic Portal System 

The portal vein is part of the hepatic portal system. A portal system differs from the 

traditional route of circulation in which oxygenated blood from the heart flows through arteries, 

arterial capillary beds, and then to the target organ. In this traditional circuit, the target tissue then 

utilizes the oxygen and nutrients from the arterial blood, and venous capillaries drain the 

deoxygenated blood from the tissue. This blood is transported to veins draining into the vena cava 

and then to the heart for reoxygenation and redistribution. In a portal system, the tissue-draining 

venous capillaries empty that blood into another venous capillary bed.  In the case of the hepatic 

portal system, the receiving venous capillary bed drains into the hepatic portal vein and into the 

liver. In doing so, there is a direct connection from organ to organ without going through the heart. 

The hepatic portal vein drains the spleen, pancreas, and gastrointestinal tract from the lower 

esophagus to the upper anal canal (Figure 2-1A). As such, there is a direct mode of transportation 

from these organs to the liver.  

 



 23 

2.1.1.3 Function 

The extensive connections between the liver and other organ systems facilitate the liver’s 

many functions in the body. All of the blood, nutrients, and products the liver receives through the 

portal and arterial inputs are filtered through the liver and also act as starting blocks for some of 

its functions. Examples include amino acid and protein synthesis. The liver is responsible for 

producing carrier proteins such as albumin and transferrin as well as numerous proteins involved 

in immune responses including opsonins, complement, and serum amyloid proteins. The liver is 

also heavily involved in carbohydrate metabolism, regulating both glucose storage and synthesis, 

and lipid metabolism due its role in bile acid metabolism. As mentioned above, the liver produces 

bile, which is stored in the gallbladder. Bile is released into the intestinal lumen via the common 

bile duct post-prandially to promote fat emulsification and digestion. The intestinal microbiome 

contributes to this process by metabolizing primary bile acids into secondary bile acids, which 

facilitate bile acid reabsorption into the hepatic portal system for  recycling and future use. This 

circuit is termed the enterohepatic circulation and offers another line of communication from the 

gut to the liver. Another major function of the liver is detoxification. Many drugs in the blood 

stream are metabolized in the liver and filtered out from systemic circulation by the prominent 

liver macrophage population. With regards to this dissertation, the most relevant aspect of the liver 

in terms of its function as gatekeeper to the rest of the body is its ability to filter out bacteria and 

bacterial products coming from the arterial and venous inputs. Research performed as early as the 

1920s showed that the liver was very effective in bacterial clearance from the vasculature (132). 

In these studies, a known concentration of bacteria was perfused into the liver and other organs. 

Bacterial concentration of the output was measured as an indicator of the efficacy of bacterial 

clearance. Indeed, the liver was the most efficient as compared to spleen, brain, lung, and intestine 
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(132). These results reflect the requirement and capability of the liver to manage the high exposure 

to intestinal-derived components whether it be cytokines, cells, microbes, or bacterial products. 

The mechanisms by which the liver manages this interaction with the intestine are described in 

more detail in the next section.    

2.1.2  Hepatic Response to Intestinal-Derived Factors 

2.1.2.1 Initial Cell Responders at the Liver Sinusoids 

Numerous cell types contribute to liver management and response to intestinal-derived 

products. At the interface of the liver and the incoming vascular supply are liver sinusoidal 

endothelial cells (LSECS), hepatic stellate cells (HSCs), and Kupffer cells (KCs). 

LSECS and HSCs are two types of hepatic stromal cells. Because of their location, these 

cells are highly exposed to the incoming components from portal and arterial supplies. The LSECs 

line the liver sinusoids to form a fenestrated endothelium which is unique in that it also lacks a 

basement membrane (88). Together, this allows for increased hepatic access of blood-borne factors 

including bacteria, bacterial products, proteins, lipids, and other nutrient and macromolecule 

transport (133). This fenestration is critical for the liver to effectively receive these substances for 

metabolism, detoxification, and hepatocyte maintenance. Indeed, this fenestrated structure is 

eliminated during some liver diseases, depriving the liver of necessary nutrients and allowing 

access of potentially harmful substances to the systemic circulation (133). HSCs are vitamin A-

rich pericytes that reside in the space of Disse between the endothelial layer and hepatocytes. They 

comprise close to 10% of resident liver cells and remain largely quiescent, but can be activated 

and transdifferentiate into collagen-producing myofibroblasts with diverse immune consequences 

(134, 135).  
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Both LSECs and HSCs play a role in innate and adaptive immunity. LSECs and HSCs 

express toll like receptors (TLRs) and scavenger receptors, allowing them to filter and respond to 

incoming pathogen- and danger-associated molecular patterns (133, 136). The enrichment of 

scavenger receptors such as mannose receptor afford LSECs a high endocytic capacity (133), 

which has been shown to be critical in blood-borne pathogen clearance (137). In activated HSCs, 

TLR9 activation promoted chemokine release and Kupffer cell chemotaxis (138), while TLR3 

activation enhanced γδ T cell-derived IL-17A (134). With regards to adaptive immunity, LSECs 

are able to present antigens to CD8+ T cells and CD4+ T cells through MHC I and MHC II, 

respectively (139, 140). Similarly, HSCs can act as antigen presenting cells, especially to invariant 

NKT cells via CD1d (141, 142). Both stromal cell types largely produce more anti-inflammatory 

responses. This includes production of IL-10, PD-1, and TGFβ that favor T regulatory cells and 

more tolerogenic responses (88). When considering the volume and diversity of potentially 

inflammatory agents these cells are be exposed too, it is appropriate that part of their role is limiting 

the overactivation of T cell responses to these substances.  

The Kupffer cell (KC) is the third cell type mentioned that resides at the liver sinusoids. 

KCs are specialized liver-resident macrophages, which comprise the largest macrophage 

population in the body (88). They are developmentally distinct from monocyte-derived 

macrophages, because of their origin from fetal liver-derived progenitor cells (143).  These cells 

take up a larger role in surveillance compared to the migratory infiltrating monocyte-derived 

macrophages. Because of the high demand of immune surveillance in the liver, it is perhaps not 

surprising that for every 100 hepatocytes, there are 20-40 macrophages (143). To facilitate their 

role in immune surveillance, KCs express TLRs, scavenger receptors, and Fc receptors like LSECs 

(143). High expression of these receptors partnered with their extremely high phagocytic activity 



 26 

allow KCs to fulfill their critical role in eliminating bacteria and bacterial products coming from 

the intestine. To promote bacterial clearance, KCs coordinate with LSECs, platelets, and other 

cells to promote bacterial phagocytosis, lysis, and other bactericidal consequences (143). 

Importantly, these cells also act as antigen presenting cells, expressing MHC II (140, 142). They 

can activate NKT cells as well through CD1-mediated antigen presentation (142). Furthermore, 

they secrete various immune mediators including cytokines and reactive oxygen species (142). 

Therefore, the effects of KCs encompass both the regulation of incoming bacterial products as well 

as the interactions with other hepatic and circulating lymphocytes. 

Because LSECs, HSCs, and KCs reside at the interface of the liver and intestinal vascular 

supply, they can induce many different effects depending on the incoming products, cells, and 

other immunogenic components. In the context of these dissertation studies, we focused on the 

effects of bacterial translocation from the intestine to the liver. 

2.1.2.2 Effects of Bacterial Translocation 

Translocation of bacteria and bacterial products to the liver can have a wide range of 

consequences. This section will broadly focus on three effects that are pertinent to these 

dissertation studies: immune cell recruitment, immune cell activation, and activation of death 

receptors.  

Immune Cell Recruitment 

As mentioned above, engagement of TLRs on these cells at the forefront of the gut-liver 

interface can prompt chemokine release and immune cell recruitment. Though they largely 

promote a tolerogenic environment to quell aberrant immune activation and maintain homeostasis, 

liver pathology and inciting stimuli can prompt these cells to contribute to a proinflammatory 
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environment.  For example, while Kupffer cells are not a migratory macrophage population, they 

have the capacity to heavily recruit inflammatory monocytes. There are data showing that TLR4 

activation by LPS can induce CCL2 secretion (144), which can promote recruitment of CCR2+ 

monocytes to the liver. Changes in adhesion molecules such as selectins on LSECs in response to 

bacterial products can promote T cell arrest and recruitment from the circulation (145, 146). In 

addition, TLR9 activation in a mouse model of hepatitis promoted recruitment of NKT cells from 

the periphery (147). Beyond these examples, there are also the various cytokines induced in 

response to bacterial products that can trigger chemokine release and further leukocyte 

recruitment.  

Immune Cell Activation 

As eluded to above, bacterial translocation can also activate other immune cells including 

T cells, NKT cells, and NK cells.  

Because CD4+ and CD8+ T cells express TLRs only at low levels, their activation by 

bacterial translocation is often mediated by other cell types. As mentioned above, KCs and LSECs 

can act as antigen presenting cells to circulating T cells. The liver is unique compared to other 

solid organs due to its capability to activate naïve T cells independent of lymphoid tissues (139, 

148, 149). This is facilitated by the structure and organization of the liver which allows high 

exposure to antigen and circulating naïve T cells in the liver sinusoids. There is also evidence of 

tissue resident memory T cells that patrol the liver sinusoids (150), which can be activated when 

exposed to cognate antigen from the incoming vascular supply. In addition to this, T cells can be 

activated in a bystander fashion through the cytokine milieu produced by KCs, LSECs, and HSCs. 

NKT cells make up a large portion of the resident liver cell population. In mice, this can 

be up to 30% of the liver T lymphocytes (151). As such, these cells play large role in maintaining 



 28 

liver homeostasis. Of note, the majority of liver NKT cells in mice are invariant NKTs (iNKTs). 

These cells specifically express Vα14-Jα18 with restricted variations in beta chains (88). iNKTs 

mount strong immune responses to sphingolipids found on and released by bacteria including those 

of the intestinal microbiome. Certain bacteria such that those in the Phylum Bacteroidetes are 

known highly produce these compounds (152). The stimulatory capacity of sphingolipids on 

iNKTs has been shown many times by administration of synthetic sphingolipid, α-

galactosylceramide (α-GalCer). Indeed, treating mice with α-GalCer in vivo results in massive 

activation and cytokine responses by iNKTs, leading to fatal hepatitis (153). This further 

demonstrates that specific bacterial-derived products can have huge immune consequences in the 

liver. However, there is a caveat with this example in terms of human translatability. The human 

counterpart to iNKTs, which express Vα24-Jα18 as opposed to Vα14-Jα18 are a much smaller 

population in the human liver (151). Therefore, the magnitude of the effects seen in mice as a result 

of iNKTs may not parallel effects in humans.  

 NK cells make up about 5-10% of hepatic lymphocytes in mice and about 20-30% in 

humans (151). Liver NK cells differ from peripheral NK cells in their enhanced cytotoxic 

capabilities. There is evidence showing that liver NK cells exhibit higher amounts of TRAIL, 

IFNγ, perforin, and granzyme B (151). NK cells release these inflammatory mediators in response 

to bacterial products including LPS and TLR3 agonist Poly I:C (151, 154, 155). Bacterial 

translocation can also indirectly activate NK cells through Kupffer cells. Indeed, Kupffer cell 

depletion decreased the liver NK population, and stimulation of NK cells with Kupffer cell-

conditioned media in vitro enhanced NK cell activation and toxicity (156).  

Speaking more broadly than specific cell types, bacterial products can also activate cells 

via the inflammasome (157, 158), resulting in release of IL-1β and IL-18 (159). For example, 
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bacterial stimulation of KCs induced inflammasome activation, most notably though NLRP3 

(143). Both IL-1β and IL-18 have a wide range of immunoregulatory effects. Due to its role in 

these gut-liver dissertation studies, the focus will be on IL-18. IL-18 is an IL-1 family member 

produced by macrophages, dendritic cells, and some epithelial cells (160). In the liver, KCs are a 

major source of IL-18. Of note, there is evidence showing that IL-22 can induce IL-18 expression 

by the intestinal epithelium (161). IL-18 binds to a dimeric receptor comprised of IL-18Rα, which 

is relatively ubiquitous, and IL-18Rβ, which is largely on T cells and DCs (160). IL-18 has 

numerous immunoregulatory functions and is therefore highly regulated though IL-18 binding 

protein (IL-18BP). Indeed, there are high amounts of serum  IL-18BP to limit aberrant responses 

(160). Demonstrating the critical role of IL-18BP in health and disease, genetic IL-18BP 

deficiency in patients has been shown to increase susceptibility to viral-mediated fulminant 

hepatitis (162). While IL-18 was first described as an IFNγ inducing factor (163), numerous reports 

have detailed its effects on lymphocyte activation, chemokine release, and cell death, which is 

discussed in more detail below (163–173).  

Death Receptors 

A downstream consequence of bacterial translocation to the liver is activation of death 

receptors. Death receptors are members of the TNF superfamily of receptors that promote cell 

death upon binding of its cognate ligand (174). Notable examples include Fas, TNF receptors 1 

(TNFR1) and 2 (TNFR2), and TNF-related apoptosis inducing ligand receptor (TRAILR) 1 

through 4. The liver is rich in death receptors (174), and therefore very susceptible to death 

receptor-mediated cell death. Indeed, injection of anti-Fas antibody to crosslink and activate Fas 

caused hepatocyte cell death and lethal hepatitis in mice (175). Engagement of these death 

receptors promotes cell death through different signaling cascades.  A key part of many of these 
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signaling cascades is the death domain, which is a 60-80 amino acid cytoplasmic domain that 

recruits the subsequent adaptor molecules required for the signaling cascade (174). Using Fas-

FasL as an example, binding of cognate ligand FasL to Fas recruits the adaptor protein Fas-

associated protein with death domain (FADD) to its death domain. Resulting signaling cascades 

then go through different caspases, ultimately converging at caspase 3 to induce cell death (174, 

176). The many pathways by which this can occur further emphasizes the impact of these death 

receptors in liver health and disease. 

 

The effects of bacterial translocation can, of course, be influenced by changes in the source 

of these products, including the intestinal microbiome. The next section will focus on how the 

microbiome and bacterial translocation have been implicated in liver disease.  

2.1.3  The Intestinal Microbiome & Bacterial Translocation in Liver Disease  

There is now a growing body of research linking alterations in the intestinal microbiome 

to liver pathologies. For example, patients with viral and autoimmune hepatitis (AIH) exhibit 

intestinal dysbiosis (103, 104). This included decreased Bifidobacterium in AIH and increased 

Prevotella in Hepatitis C (103, 104). Changes in the commensal microbiome were similarly seen 

in alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFDL). In both diseases, 

there were increased Enterobacteriaceae and decreased Akkermansia muciniphila (177). As these 

were descriptive studies, research in mouse models have been performed to evaluate a causal role 

of the microbiome in disease pathogenesis. In concanavalin A hepatitis, a T cell-dependent liver 

injury model often used to study AIH, germ free mice and mice treated with gentamicin exhibited 

decreased disease severity as measured by liver histology and serum markers of liver inflammation 
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(108, 178). In a mouse model using a genetic predisposition to autoimmune hepatitis, treatment 

with vancomycin or ampicillin ameliorated disease (179). This study by Kriegel and colleagues 

went further to identify Enterococcus gallinarum as an exacerbating factor in the mouse model. 

Moreover, they found DNA from Enterococcus gallinarum in biopsies of patients with AIH (179).  

In a mouse model of alcoholic liver disease, fecal transplant from patients with ALD into germ-

free mice exacerbated disease with increased liver inflammation, lymphocyte infiltration, and cell 

death (180). Together, these examples demonstrate the potential role of the intestinal microbiome 

in liver disease pathogenesis. 

Given the closely related vasculature of the liver and intestine, there is a normal 

physiological flux of bacterial products to the liver through the portal vein draining the intestine 

(88). This flux can become more pronounced in the diseased states. For example, in HIV-

associated liver disease, increases in serum LPS have been documented and are thought to 

contribute to wasting and liver pathology (181).  In patients with ALD and NAFLD, increased 

serum endotoxin as well as systemic and liver TLR ligands were described (177). Indeed, many 

liver diseases and their related models of liver inflammation have been associated with increased 

bacterial translocation (99, 103, 108, 182–184). Focusing on mouse studies, the work by Kriegel 

and colleagues mentioned above also described liver translocation of E. gallinarum (179). 

Furthermore, work by Henao-Mejia et al. showed that the inflammasome induced changes in the 

intestinal microbiota which led to increased bacterial translocation to the liver, exacerbating 

NAFLD (102). 

Many of these diseases with changes in the microbiome and bacterial translocation have 

been associated with increased intestinal permeability as well (99, 103, 183). Increases in intestinal 

permeability allow greater access of the microbiome and bacterial products to the liver and 
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systemic circulation, magnifying their potential effects. Interestingly, Th17 cells, which play 

important roles in maintaining both the intestinal microbiome and permeability, have also been 

heavily implicated in liver disease.  

2.1.4  Th17 Cells in Liver Disease 

There is evidence in patients and mouse models linking Th17 cells to liver pathology. For 

example, both autoimmune and viral hepatitis patients displayed elevated serum IL-17 (105–107). 

In patients with alcoholic liver disease, there was increased Th17 cell infiltration that correlated 

with neutrophil recruitment, a known effect of Th17 cells (185). In non-alcoholic steatohepatitis 

(NASH), a subtype of NAFLD, increased circulating Th17 cells were described (100). Moreover, 

patients who progressed from non-alcoholic fatty liver (NAFL) to NASH exhibited more 

intrahepatic IL-17+ cells (101). In mouse models, the Kolls lab previously showed that global IL-

17RA knockout mice (Il17ra-/-) were protected from  Con A hepatitis (186). In addition, numerous 

studies using high fat diet-induced models of NAFLD showed increased Th17 cells in the liver, 

visceral adipose tissue, and blood (100). The proposed mechanisms by which Th17 cells are 

thought to contribute to liver disease include neutrophil recruitment via Th17-mediated chemokine 

release, fibrogenic effects promoting collagen deposition by HSCs, alteration of lipid metabolism 

via PPARγ, and IL-17 and IL-21-mediated release of proinflammatory cytokines by 

nonparenchymal cells including KCs and HSCs (98, 100, 187, 188). Mechanistically, the following 

dissertation work proposes a novel role for intestinal Th17 cells in liver inflammation. 
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2.1.5  Study Overview 

As previously discussed, Th17 cells play a critical role in regulating the intestinal 

microbiome and maintaining intestinal barrier integrity (35, 38, 40, 41, 48, 54, 189, 190). Given 

the importance of IL-17R in intestinal homeostasis and the reported links between liver disease 

and both intestinal dysbiosis and bacterial translocation, we hypothesized that intestinal IL-17R 

signaling plays a critical role in mitigating hepatic inflammation. To test this, we used intestinal 

epithelium-specific IL-17RA knockout mice (Il17rafl/fl x villin cre+ mice) in the concanavalin A 

(Con A) model of T-cell mediated hepatitis. Absence of enteric IL-17RA signaling induced 

commensal dysbiosis, expansion of intestinal Th17 cells, and intestinal Il18 expression. After Con 

A administration, Il17rafl/fl x villin cre+ mice exhibited more severe hepatitis accompanied by 

increased hepatocyte cell death. Mechanistically, we found that disease exacerbation was 

microbiome dependent, specifically implicating a role of gram-negative bacteria. In addition, we 

found that intestinal specific knockout mice displayed increased translocation of unmethylated 

CpG DNA to the liver. Our data suggested that CpG DNA exacerbates liver inflammation by 

driving expression of hepatic IL-18 to promote lymphocyte activation and FasL production in 

hepatic T-cells. Thus, intestinal IL-17R regulates translocation of TLR9 ligands and constrains 

susceptibility to hepatic inflammation. Our studies elucidate the role of enteric Th17 signaling and 

the microbiome in hepatitis, with broader implications on the effects of impaired intestinal 

immunity and subsequent release of microbial products seen in other diseases. 
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2.2 Methods 

2.2.1  Experimental Model and Subject Details  

Mice 

All mouse work was performed in accordance with the Institutional Animal Care and Use 

Committees (IACUC) and relevant guidelines at the University of Pittsburgh, School of Medicine 

(protocol #16109334). C57BL/6 mice were obtained from Taconic Biosciences (Germantown, 

NY). Nlrc4mutIl18bp-/- mice, which were bred and housed at the UPMC Children’s Hospital of 

Pittsburgh, were kindly provided by Dr. Scott Canna. Il17rafl/fl and Il17rafl/fl x villin cre+ mice were 

generated at the UPMC Children’s Hospital of Pittsburgh by crossing Il17rafl/fl mice to Il17rafl/fl x 

villin cre+ mice. Both male and female age-matched mice from 6-10 weeks of age were used for 

all experiments. The aforementioned breeding strategy allowed for controls and knockout mice 

within each experiment to be littermates. Littermate age-matched males and females were 

randomly assigned to experimental groups. Both males and females were used within each group 

in order to account for sex-differences while maintaining littermate controls and sufficient n for 

statistical power. All mice were housed in pathogen-free conditions at the UPMC Children’s 

Hospital of Pittsburgh.  

 

In vitro and ex vivo cultures 

Mouse TLR9 and TLR4 reporter cells (HEK-blue mTLR9 and HEK-dual mTLR4 reporter 

cells) were obtained from Invivogen and maintained according to manufacturer’s instructions. 

 



 35 

Ex vivo stimulation of liver cells: Livers from 6-10-week-old naïve Il17rafl/fl mice and 

Il17rafl/fl x villin cre+ mice were harvested and enriched for mononuclear cells by Percoll gradient. 

In addition to detailed experiment-specific stimuli, cells were maintained at 37°C in Iscove’s 

Modified Dulbecco’s Medium (IMDM) with GlutaMAX Supplement (Gibco), 10% heat-

inactivated fetal bovine serum, 100 units/mL of penicillin and streptomycin, and 0.3mg/mL of L-

glutamine.  

 

Experimental Models 

Concanavalin A (Con A) hepatitis was induced using concanavalin A from Canavalia 

ensiformis (jack bean) type IV (Sigma).  

2.2.2  Method Details 

Animal treatments 

C57BL/6, Il17rafl/fl, and Il17rafl/fl x villin cre+ mice were injected with 10mg/kg or 25mg/kg 

Con A intravenously (IV) via tail vein. For antibiotic studies, mice were treated with either five 

days of 1g/L neomycin or 14 days of 0.5g/L vancomycin in the drinking water ad libitum prior to 

Con A injection and remained on antibiotics throughout the hepatitis model. For CpG DNA pre-

treatments, Class C CpG (Invivogen) was injected 3x at 2.5mg/kg intraperitoneally (IP) prior to 

10mg/kg IV Con A. For IFNγ inhibition, mice were injected with Anti-IFNγ (BioXCell, XMG1.2) 

at 500μg/mouse IP one hour prior to 25mg/kg Con A injection. For FasL inhibition, mice were 

injected with 250-500μg/mouse IV into the retro-orbital sinus one hour prior to 25mg/kg Con A 

injection. For IL-18 blockade, anti-IL-18 was injected IP at 0.5mg/mouse one day prior to 25mg/kg 

IV Con A injection.  
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Alanine aminotransferase quantification 

Alanine aminotransferase (ALT) was measured in the serum of mice using the Vitros DT60 

II chemistry system (Ortho-Clinical Diagnostics, Inc.) (191) or ALT Activity Assay (Sigma) per 

manufacturer’s instructions. Method of ALT measurement was consistent within experiments.  

 

TUNEL Staining  

Liver tissues used for TUNEL staining were immediately fixed in 4% paraformaldehyde 

for 24-72 hours, washed 3x in PBS, and stored in 70% ethanol prior to paraffin embedding. 

Following paraffin embedding, slides were stained using the ApopTag® Peroxidase In Situ 

Apoptosis Detection Kit according to manufacturer’s instructions.  

 

Cohousing studies  

Littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice were either kept cohoused or separated 

for one week prior to Con A injection and remained in assigned housing conditions throughout 

hepatitis model. 

 

qRT-PCR and RNA Sequencing 

Livers and intestines from naïve 6-10-week-old littermate Il17rafl/fl and Il17rafl/fl x villin 

cre+ mice were homogenized in Trizol buffer (Life Technologies). Total RNA extraction was 

performed according to Trizol manufacturer’s instructions. RNA was transcribed into cDNA using 

iScript reagent (Bio-RAD) according to manufacturer’s instructions.  



 37 

For qRT-PCR, SYBR Green supermix (Bio-RAD) was used for analysis of small subunit 

ribosomal RNA gene (16S rRNA) expression. 16S primers included: forward: 

ACTCCTACGGGAGGCAGCAGT, reverse: ATTACCGCGGCTGCTGGC (47, 48, 192). 

SsoFast supermix (Bio-RAD) was used for qRT-PCR analysis with primers for mouse Hprt 

(Integrated DNA Technologies), Ifng (Applied Biosystems), and Fasl (Applied Biosystems). 

Expression of all genes was normalized relative to housekeeping gene mouse Hprt. Reaction: 95°C 

for 3 minutes, 49 cycles at 95°C for 10 seconds (s) and 60°C for 30s. SYBR Green reactions also 

had an additional melt curve at the end of the reaction above: 60°C for 5s with +0.5°C increment 

every cycle up to 95°C. 

Terminal ileum bulk RNA sequencing data was sourced from dataset we previously 

published (48). See previous manuscript for detailed methods.  

 

Single Cell RNA Sequencing  

Livers from 6-week-old littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice were harvested 

at the naïve state or ninety minutes post 25mg/kg IV Con A injection. Single cell suspensions were 

isolated and enriched for mononuclear cells via Percoll gradient. Briefly, livers were collected in 

IMDM with GlutaMax (Gibco) supplemented with 10% FBS, penicillin, streptomycin, and L-

glutamine (“complete media”). Livers were minced into small pieces and digested in neat IMDM 

with 1mg/mL collagenase and 0.2mg/mL DNase at 37°C for 30 minutes with shaking. Cell 

suspension was further homogenized by flowing through an 18G needle in a 3mL syringe followed 

by filtering through a 70μm filter. Following a wash in complete media, mononuclear cells were 

enriched using a 70%/30% percoll gradient. Cells were washed 2x in complete media and 

resuspended for downstream applications.  
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For single cell RNA sequencing library preparation, liver cells were then separated into 

mini-reaction "partitions" or Gel bead in emulsion (GEM)s formed by oil micro-droplets, each 

containing a gel bead and a cell, by the Chromium instrument (10X Genomics). The reaction 

mixture/emulsion with captured and barcoded mRNAs were removed from the Chromium 

instrument followed by reverse transcription. The cDNA samples were fragmented and amplified 

per 10X protocol. The libraries were then purified, quantified, and sequenced on an Illumina 

NextSeq 550. Analysis was performed using the pipeline Cell Ranger developed by 10X Genomics 

as well as Seurat. 

 

16S rRNA Gene Sequencing  

Littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice were sacrificed at the naïve state or 8 

hours post Con A injection. Terminal ileum RNA was isolated using Trizol (Life Technologies) 

and transcribed to cDNA using the iScript Reverse Transcription Supermix (Bio-rad), both 

according to manufacturer’s instructions. Extracted DNA was PCR amplified using the 

method/primers of Caporaso (193) and the Q5 HS High-Fidelity polymerase (NEB). Four 

microliters of each sample were amplified in a 25μl PCR reaction with barcoded V4 16S primers. 

Cycle conditions were 98°C for 30s, then 25 cycles of 98°C for 10s, 57°C for 30s, 72°C for 30s, 

with a final extension step of 72°C for 2 min. Reactions were purified with AMPure XP beads 

(Beckman) at a 0.8:1 ratio (beads:DNA) to remove primer-dimers. Eluted DNA was quantitated 

on a Qubit fluorimeter (Life Technologies). Sample pooling was performed on ice by combining 

20ng of each purified band. For negative controls and poorly performing samples, 20μl of each 

sample was used. The sample pool was first purified/concentrated with the MinElute PCR 

purification kit. Next, two-sided AMPure XP bead purification was used at 0.8:1 (left-side) and 
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0.61:1 (right-side) ratios to remove small and large contaminants, respectively. A final cleanup in 

the Purelink PCR Purification Kit (Life Technologies) was performed to insure removal of all 

AMPure XP beads. The final, purified pool was quantitated in triplicate on the Qubit fluorimeter 

prior to sequencing.  

Sequencing pool preparation was as per Illumina’s recommendations, with an added 

incubation at 95°C for 2 minutes immediately following the initial dilution to 20 picomolar. The 

pool was then diluted to a final concentration of 6 pM + 15% PhiX control. Paired-end sequencing 

was done on an Illumina MiSeq platform using a MiSeq Reagent kit v2 (500 cycles). 

 

Fecal Bacterial Flow Cytometry 

Followed protocol as detailed in Gopalakrishna et al. (194). Briefly, fecal matter was 

collected and weighed. 1ml of sterile PBS was added to the fecal content and homogenized by 

vortex and pipetting. Stool suspension was then passed through a 40-micron strainer into a 50ml 

conical tube. 10μl of stool was added to a round-bottom 96-well plate for IgA staining. Plated stool 

was washed 2.5x in BAC-FACS buffer (filtered 1%BSA in PBS) at 4000rpm for 5 minutes at 4 

degrees C. Stool was then stained in BAC-FACS buffer using Hoechst stain (1:1000dil), normal 

rat serum (1:5dil), and anti-mouse IgA PE or isotype control (1:500 dil). Samples were stained for 

one hour on ice in the dark and washed 2.5x with 100μl BAC-FACS buffer. Samples were 

reconstituted in BAC-FACS buffer, and 10μl of Accu-Check counting beads were added to each. 

Samples were analyzed by flow cytometry on the BD Fortessa cytometer. Bacterial calculations 

using Accu-Check beads were done using manufacturer’s instructions.  
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mTLR reporter assays 

For mTLR4 and mTLR9 reporter cell assays, cells were grown and maintained according 

to manufacturer’s instructions (Invivogen). For the assay, cells were stimulated with serum or liver 

homogenate of naïve littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice. For the liver homogenate, 

livers were homogenized in PBS plus protease inhibitor (Roche). BCA Protein Assay (Pierce) was 

performed according to manufacturer’s instructions to measure total protein concentration. 

Dilutions were performed in PBS plus protease inhibitor to normalize concentrations between 

samples prior to reporter assay. SEAP levels were measured using QUANTI-Blue detection media 

(Invivogen). Assays were conducted according to the manufacturer’s instructions.   

For DNase treatment of liver homogenate, livers were harvested, homogenized in PBS plus 

protease inhibitors, and diluted to normalize total protein concentration as described above. An 

aliquot of liver homogenate was treated with DNase I from bovine pancreas (Sigma) reconstituted 

in PBS + MgCl to activate enzyme per manufacturer’s instructions. Vehicle control treatment was 

PBS + MgCl without DNase. Liver homogenate plus DNase or vehicle control were incubated at 

37 degrees C with shaking for 30 minutes. Digested samples were then plated on mTLR9 reporter 

cell line as described above. Positive control to ensure DNase treatment efficacy was E. coli 

dsDNA (Invivogen). 

 

Flow cytometry 

Liver single cell suspensions were isolated and enriched for mononuclear cells from 

C57BL/6 mice or littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice as described above in Single 

Cell RNA Sequencing.  For staining, cells were washed in HBSS. Surface and live/dead stains were 

performed in 50μl-75μl in a 96 well round bottom plate in the dark on ice for 20 minutes. Cells 
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were washed 2.5x in cold FACS Buffer (0.5% FBS/0.01% NaN3/PBS). Cells were then fixed using 

BD Cyto-fix and incubated in the dark on ice for 20 minutes. If no further staining was required, 

cells were washed 2x in FACS buffer, resuspended in PBS or FACS buffer, and analyzed using 

the BD Fortessa flow cytometer. If additional intracellular stain analysis was required, cells were 

washed 1x in BD Perm/Wash. 50-75μl of intracellular stain cocktail made in BD Perm/Wash was 

then added to the cells and incubated in the dark on ice for 45 minutes. Cells were then washed 2x 

in BD Perm Wash, 1x in FACS buffer, and resuspended in PBS or FACS buffer for analysis on 

the BD Fortessa flow cytometer. Data analysis was performed on FlowJo. Cell number was 

quantified using the Nexcelom Cellometer Auto 2000. Flow cytometry antibodies used included: 

Live/Dead fixable aqua dead cell stain (Life Technologies) (1:500 dilution), BV786 Anti-mouse 

CD4 (BD Clone RM4-5) (1:200 dilution, APC Anti-mouse IFNγ (BD Clone XMG1.2) (1:200 

dilution), APCe780 Anti-mouse TCRβ (BD Clone H57-597) dilution), BV421 Anti-mouse NK1.1 

(BD clone PK136) (1:100 dilution), BV395 Anti-mouse CD3 (BD Clone 145-2C11) (1:200 

dilution), PCP-Cy5 Rat-Anti-Mouse CD3 Molecular Complex (BD clone 17A2) (1:200 dilution), 

BV605 Anti-Mouse CD90.2 (BD clone 30-H12) (1:400 dilution), PE Anti-Mouse FasL (Biolegend 

Clone MFL3) (1:200 dilution), PE-Cy7 Anti-mouse CD8 (Invitrogen clone eBioH35-7.2) (1:400 

dilution), Anti-Mouse CD16/CD32 (eBioscience Clone 93). 

 

Ex vivo liver cell stimulations 

Liver single cell suspensions were isolated and enriched for mononuclear cells from 

C57BL/6 mice or littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice as described above in Single 

Cell RNA Sequencing. Cells were then resuspended in IMDM with GlutaMax (Gibco) 

supplemented with 10% FBS, penicillin, streptomycin, and L-glutamine (“complete media”) and 
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plated at a concentration of 5 x 105 or 1 x 106 cells per well in a 96-well round bottom plate. Cell 

number was kept consistent within experiments. Cells were then stimulated with various 

conditions at 37°C for the detailed incubation times. For TLR ligand stimulations: Lipoteichoic 

acid, flagellin, lipopolysaccharide, and CpG were all attained from Invivogen and used at 

10ng/mL-1μg/mL or 1μM-5μM. Exact concentrations are detailed within each figure. During 

stimulations with TLR ligands ± Concanavalin A, 5ug/mL of Concanavalin A (Sigma) was used. 

Supernatants were harvested at 24 hours and analyzed for IFNγ and IL-18 levels by ELISA or 

Luminex. For downstream flow cytometry analysis, brefeldin A (BD) was added for 3 hours after 

4 hours of 1μM CpG stimulation. Cells were then stained and fixed for flow cytometry analysis as 

described above in Flow Cytometry. For non-TLR ligand stimulations, cells were stimulated with 

Con A (5ug/mL) or anti-CD3/CD28 (Thermo Fisher, Dynabeads) stimulation for three days. 

Supernatants were harvested and cytokine levels were measured via  Luminex. 

 

FITC Dextran Assay for Intestinal Permeability 

Four hours prior to FITC dextran gavage, water bottles were removed from the mouse 

cages. FITC-dextran (4kDa, Sigma) was dissolved in PBS at a concentration of 100 mg/ml and 

administered to each mouse at 44mg/100g body weight by oral gavage. Mice were euthanized after 

4 hours, and blood was collected immediately after via cardiac puncture. Serum was isolated from 

blood samples. 

For analysis, serum was diluted with an equal volume of PBS. 100μl of diluted serum was 

added to a 96-well microplate in duplicate. Concentration of FITC in serum was determined by 

florescence spectroscopy. The plate was read at an excitation of 485 nm (20 nm band width) and 

an emission wavelength of 528 nm (20 nm band width). Serially diluted FITC-dextran (0, 125, 
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250, 500, 1,000, 2,000, 4,000, 6,000, 8,000 ng/ml) was used as a reference standard to calculate 

serum concentrations. Serum from mice gavaged with PBS instead of FITC-dextran was used to 

determine background. 

 

ELISA and Luminex Assays 

Cytokines from serum, liver homogenate, and cell culture supernatants were measured 

using the following ELISA or Luminex kits according to the manufacturer’s instructions: Mouse-

IFNγ ELISA MAX Kit (BioLegend), MILLIPLEX Mouse Th17 Magnetic Bead Panel (Millipore 

Sigma), Cytokine & Chemokine 36-Plex Mouse Procarta Plex Panel 1A (Thermo Fisher Scientific-

Affymetrix), and IL-18 Mouse ELISA Kit (Invitrogen).  

2.2.3  Quantification and Statistical Analysis 

TUNEL Image Quantification 

To quantify TUNEL staining, five images spanning the width of the liver slice were taken 

at 10x magnification. Images were analyzed using Image J. Briefly, images were deconvoluted to 

isolate and analyze only the TUNEL diaminobenzidine (DAB) staining. A threshold of the TUNEL 

DAB stain was determined to minimize background staining (i.e. vascular endothelial cells, 

erythrocytes). Identical threshold was applied to all samples per experiment. Using the “measure” 

feature on Image J, TUNEL+ staining was then quantified as the percent of the total image area 

that was above the set color threshold. To ensure that focal batches of cell death throughout the 

liver were accounted for, the % area TUNEL+ of all five images were averaged to determine the 

% Area TUNEL+ per mouse.  
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Single Cell RNA Sequencing Analysis 

Following sequencing described above, we used Cell Ranger version 2.1.1 (10x Genomics) 

to process raw sequencing data and Seurat suite version 2.2.1 for downstream analysis. Filtering 

was performed to remove multiplets and broken cells, and non-relevant sources of variation were 

regressed out. Variable genes were determined by iterative selection based on the dispersion vs. 

average expression of the gene. For clustering, principal component analysis was performed for 

dimension reduction. Top 10 principal components (PCs) were selected by using a permutation-

based test implemented in Seurat and passed to t-SNE for visualization of clusters. 

 

Bulk Intestinal RNA Sequencing Analysis 

Data presented is sourced from the dataset we previously published (48). See previous 

manuscript for detailed statistical analysis.  

 

16S rRNA Gene Sequencing Analysis 

Sequence read quality control and classifications were completed using the Center for 

Medicine and the Microbiome in-house read processing and classification pipeline. The read 

processing pipeline applied low complexity filtering (NCBI dustmasker), QV trimming, sequence 

adapter trimming and primer trimming modules.  Sequences with both forward and reverse read 

directions passing read processing metrics were assembled using the make.contig command  from 

Mothur (195).  Mated reads were further screened to limit overlap mismatch proportion (<0.2), 

limit N’s allowed (4), and enforce a minimal overlap of 25bp. Merged sequences were classified 

with a Mothur-dependent in-house pipeline that combines OTU generation and taxonomic 

classifications using the RDP/Silva classifier and includes chimera screening, clustering and 
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taxonomic classification. The sample taxonomic profile was subsequently represented as a matrix 

with dimensions: number of samples x number of taxonomic units for compositional analysis with 

an in-house pipeline which incorporated statistical modules and graphics using the R package 

(196).  

 

Statistical Tests 

Statistical tests used are indicated in the figure legends. Data are presented as mean with 

individual samples visualized or mean + SEM. To compare differences between two groups, 

student-T test or non-parametric Mann-Whitney test was used depending on the distribution of the 

data. When comparing one variable in three or more groups, one-way ANOVA with multiple 

comparisons was used. When comparing multiple variables among two groups, two-way ANOVA 

with multiple comparisons or multiple T-tests per row was used. GraphPad Prism software was 

used to analyze experimental groups. For single cell RNA sequencing, statistical analysis was 

based on the non-parametric Wilcoxon rank sum test. For all data, statistically significant was 

defined as p<0.05. The degree of statistical significance was defined as: p<0.05*, <0.01**, 

<0.001***, <0.0001****. 

 

Analysis Software 

GraphPad Prism was used for statistical analysis described above. Image J was used for 

histology analysis. Seurat, Cell Ranger, and Loupe Browser were used for single cell RNA 

sequencing analysis.  
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2.2.4  Data and Software Availability  

The raw terminal ileum RNA sequencing data have been deposited into the sequencing 

read archive under SRA accession number SRP069071. 16S rRNA sequencing data have been 

deposited in the SRA under SRA BioProject accession number PRJNA526489. The liver single 

cell RNA sequencing data discussed in this publication have been deposited in NCBI's Gene 

Expression Omnibus(197) and are accessible through GEO Series accession number GSE128284 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128284). 

Figure cartoons within this chapter were images adapted from Servier Medical Art by 

Servier. Original images are licensed under a Creative Commons Attribution 3.0 Unported License 

(https://creativecommons.org/licenses/by/3.0/legalcode). 

2.3 Results 

2.3.1  Deletion of IL-17RA in intestinal epithelium exacerbates Concanavalin A hepatitis. 

To investigate how intestinal IL-17 signaling regulates liver inflammation, we generated 

intestinal epithelium-specific Il17ra knockout mice (Il17rafl/fl x villin cre+) (48). Mice were treated 

with intravenous concanavalin A (Con A), a plant lectin, to induce a T-cell dependent liver injury 

(198). We have previously shown that globally deleting Il17ra is protective in this model of 

hepatitis (186). Interestingly, deleting Il17ra signaling specifically in the intestinal epithelium 

exacerbated disease (Figure 2-2). As compared to littermate Il17rafl/fl controls, Il17rafl/fl x villin 

cre+ mice exhibited elevated serum alanine aminotransferase (ALT), a marker of liver 
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inflammation, and increased mortality rates (Figure 2-2A-B). Liver pathology revealed 

substantially larger patches of cell death in the hepatic parenchyma (Figure 2-2C). Indeed, 

quantification of cell death by TUNEL staining showed approximately 50% more cell death on 

average in Il17rafl/fl x villin cre+ mice as compared to littermate floxed controls (Figure 2-2D).  
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Figure 2-2. Deletion of IL-17RA in intestinal epithelium exacerbates Concanavalin A hepatitis. 

Littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice were injected IV with concanavalin A (Con A). (A) Serum alanine 

aminotransferase (ALT) at 4 hours post Con A (10mg/kg). (B) Survival curve after 24 hours post Con A (10mg/kg). 

(C) Quantification of TUNEL staining at 8 hours post Con A (25mg/kg). (D) Representative images of TUNEL-

stained liver histology at 8 hours post Con A (25mg/kg). Data are represented as mean + SEM. (n=5-9 mice/group). 

p<0.05*, <0.01**, <0.001***, <0.0001**** (Mann-Whitney test, Gehan-Breslow-Wilcoxon test) 
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2.3.2  Exacerbated liver injury is dependent on the intestinal microbiota. 

Given the role of Th17 cells in regulating the intestinal microbiota (48, 60, 199), we tested 

whether the exacerbated liver injury was microbiome dependent. To do this, we performed 

cohousing studies in which littermates were either cohoused or separated by genotype for one week 

prior to Con A injection. When separated, intestinal specific knockouts continued to demonstrate 

more severe disease as measured by ALT (Figure 2-3A). Cohousing the groups to share the 

intestinal microbiota between mice eliminated significant differences in post-Con A ALT levels 

(Figure 2-3B), suggesting that disease exacerbation is microbiome-dependent.   

IL-17 has been strongly implicated in the regulation of bacteria in the small intestine, 

particularly those closely related to the intestinal epithelium such as segmented filamentous 

bacteria (Sfb) (48, 60). To that end, we performed 16S rRNA gene sequencing on the small 

intestine terminal ileum of littermate Il17rafl/fl x villin cre+ mice and floxed controls to examine 

changes in the microbiome due to IL-17R deficiency (Figure 2-3C). An outgrowth of Sfb in 

Il17rafl/fl x villin cre+ mice was seen in the naïve state and became more pronounced after Con A 

(Figure 2-3C). The only other difference observed at the family level was an outgrowth of 

Enterobacteriaceae seen in some Il17rafl/fl x villin cre+ mice after Con A administration (Figure 

2-3C). To broadly assess which bacteria may be contributing to liver disease, we treated mice with 

2 different antibiotic regimens prior to Con A. Mice either received neomycin to largely target 

gram-negative bacteria or vancomycin to target Sfb and other gram-positive bacteria. Based on 

ALT, neomycin protected mice while vancomycin had no effect, suggesting gram-negative 

bacteria may contribute to hepatitis in this model (Figure 2-3D-E). 
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Figure 2-3. Exacerbated liver injury is dependent on the intestinal microbiota. 

(A-B) Littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice were either cohoused or separated for one week. Mice were 

then treated with IV concanavalin A (Con A) (25mg/kg), and serum alanine aminotransferase (ALT) was measured at 

8 hours. (n=6-14 mice/group). (C) 16S sequencing on terminal ileum of littermate Il17rafl/fl and Il17rafl/fl x villin cre+ 

mice at the naïve state and 8 hours post IV Con A (25mg/kg) (n=7-16 mice/group). (D-E) Mice were treated with 

either five days of 1g/L neomycin (D) or 14 days of 0.5g/L vancomycin (E) in the drinking water ad libitum. Mice 

were then injected with IV Con A and serum ALT was measured 8-9h post injection. (n=4-6 mice/group). (F) 16S 

rRNA transcript was measured by qRT-PCR in the liver of naïve littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice 

(n=7-10 mice/group). (G-H) Serum and liver homogenate from naïve littermate Il17rafl/fl and Il17rafl/fl x villin cre+ 

mice were plated on mTLR9 SEAP reporter cells. (n=4-8 mice/group). Absorbance of supernatants was measured and 

represented as ratio over null/unstimulated cells. (A-B, D-H) Data are represented as mean + SEM. p<0.05*, <0.01**, 

<0.001***, <0.0001**** (Unpaired T test; Multiple T tests per row; Mann-Whitney Test).  
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To characterize this further, we considered how the mechanisms by which Th17 cells 

regulate the microbiome are not necessarily specific to one bacterium. Rather, they affect the 

bacteria that generally reside close to the intestinal epithelium. Therefore, we hypothesized that 

there was a broad bacterial overgrowth in the gut specific knockout mice potentially contributing 

to disease. Utilizing flow cytometry partnered with counting beads (194), preliminary data showed 

increased fecal bacterial burden in Il17rafl/fl x villin cre+ mice as compared to littermate floxed 

controls (Figure 2-4A). Because intestinal secretory IgA is regulated by intestinal IL-17, IgA 

binding on bacteria was also analyzed. Il17rafl/fl x villin cre+ mice had an enrichment for IgA 

unbound (IgA-) bacteria, which were depleted with neomycin (Figure 2-4B-C). This suggested 

that the potentially detrimental bacterium or group of bacteria involved in exacerbating disease in 

gut specific knockout mice were IgA unbound bacteria overgrowing in the absence of intestinal 

IL-17 regulation through IgA.   
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Figure 2-4. Il17rafl/fl x villin cre+ mice have an increased fecal bacterial burden, enriched with neomycin-

sensitive, IgA-unbound bacteira. 

 (A) Fecal bacterial counts from naïve Il17rafl/fl and Il17rafl/fl x villin cre+ mice treated with neomycin or H2O control 

as measured via flow cytometry. (B) Quantification of IgA unbound (IgA-) and IgA bound (IgA+) bacterial counts 

with and without neomycin treatment in Il17rafl/fl and Il17rafl/fl x villin cre+ mice. (C) Representative FACS plots fecal 

bacteria stained with isotype or IgA (Gated by FSC, SSC, and Hoechst+). Data are representative of multiple 

experiments. (n = 4-5 mice/group). Data are represented as mean + SEM. p<0.05*, <0.01**, <0.001***, <0.0001**** 

(Two-way ANOVA with multiple comparisons).  
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Next, we sought to assess how the Il17rafl/fl x villin cre+ microbiota was influencing liver 

disease. Because Th17 signaling is critical for mucosal barrier integrity (40, 189, 199), and 

intestinal blood drains through the portal system to the liver, it is possible that bacteria were 

physically translocating to the livers of our intestinal-specific IL-17RA knockout mice. As an 

initial assessment, we performed 16S qRT-PCR on the livers of naïve Il17rafl/fl x villin cre+ mice 

and littermate controls. Results showed an increased 16S signal in gut-specific knockout mice 

(Figure 2-3F), suggesting more bacteria or bacterial products in the liver of these mice at baseline. 

We determined this signal was not from live bacteria as bacteria failed to grow from the liver in 

both aerobic and anaerobic conditions (data not shown). As such, mouse toll-like receptor (mTLR) 

reporter cell lines were subsequently utilized to assay for bacterial products. With a focus on gram-

negative bacteria, serum and liver homogenate from naïve Il17rafl/fl x villin cre+ mice and 

littermate controls were plated on mTLR4 or mTLR9 reporter cells to measure lipopolysaccharide 

(LPS) and unmethylated CpG DNA levels, respectively. There were no differences in LPS levels 

in the serum or liver homogenate (Figure 2-5). However, there was elevated CpG DNA in the liver 

homogenate of Il17rafl/fl x villin cre+ mice as measured by the mTLR9 reporter line (Figure 2-3G). 

This was not seen in serum (Figure 2-3H), suggesting both that the liver is successfully filtering 

products from entering the circulation, and that CpG DNA may be signaling through TLR9 locally 

in the liver to influence disease. To model if elevated CpG DNA prior to disease induction 

exacerbates disease, wildtype C57BL/6 mice were treated with 3 doses of CpG DNA through the 

week prior to Con A (Figure 2-6A). CpG DNA administration prior to Con A dramatically 

increased mortality rates as compared to Con A, CpG DNA, or vehicle control alone (Figure 2-

6B), corroborating previous reports that CpG DNA exacerbates Con A hepatitis (147). 
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Figure 2-5. Il17rafl/fl x villin cre+ mice do not have elevated serum or liver LPS. 

Serum (A) and liver homogenate (B) from naïve littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice were plated on 

mTLR4 SEAP reporter cells. Absorbance of supernatants was measured and represented as ratio over 

null/unstimulated cells. Data are represented as mean + SEM. n =7-14 mice/group. Data are represented as mean + 

SEM. p<0.05*, <0.01**, <0.001***, <0.0001**** (Unpaired t- test) 

 

 

 

 

Figure 2-6. CpG DNA promotes fatal Con A hepatitis. 

Wildtype C57BL/6 mice were pretreated with IP 2.5mg/mL CpG 3x prior to IV Con A injection (10mg/mL). (A) 

Experimental schematic of treatment regimen. (B) Survival curve. (n=4-5 mice/group). (A-B) Data are represented as 

mean + SEM. p<0.05*, <0.01**, <0.001***, <0.0001**** (Log-rank (Mantel-Cox) test) 
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2.3.3  Intestinal IL-17RA constrains TLR9-induced Type I immune responses in the liver. 

CpG DNA and subsequent TLR9 signaling are capable of eliciting a variety of 

inflammatory cytokines such as IL-12, IL-6, and interferons (200–202). To investigate which 

CpG-inducible cytokines may be contributing to worsened liver disease in gut-specific knockout 

mice, we first wanted to establish which cytokines were elevated in Il17rafl/fl x villin cre+ mice. To 

employ a broad, unbiased approach, we performed single cell RNA sequencing. Previous reports 

have detailed cytokine changes at the protein level within hours of Con A injection (203).  

Therefore, we chose a ninety-minute post-injection timepoint to investigate transcriptional 

changes induced early in the model. We compared the liver transcriptome of Il17rafl/fl x villin cre+ 

mice against littermate Il17rafl/fl controls. Based on K-means clustering and upregulation of cell-

specific genes (Table 2-1), we identified 12 distinct cell populations (Figure 2-7A). One of the 

significantly upregulated genes in Il17rafl/fl x villin cre+ mice was Ifng (Figure 2-7B-C). IFNγ is a 

known contributor to liver inflammation in Con A hepatitis and an indicator of lymphocyte 

activation (204–206). In the single cell RNA sequencing dataset, Ifng was expressed by T cells 

(CD4+ and CD8+ T cells), NK cells, and NKT cells (Figure 2-7C). There were also increases in 

downstream IFNγ targets such as Cxcl9 and Cxcl10 (Fig 3B), providing further evidence of Ifng 

upregulation.  
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Table 2-1. Single Cell RNAseq Cluster Gene Lists. 

Cell-type specific gene lists (bold) and top 50 most significantly differentially expressed genes per cluster. 
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Figure 2-7. Intestinal IL-17RA constrains TLR9-induced Type I immune responses in the liver. 

(A-C) Ninety minutes after IV concanavalin A (25mg/kg), single cell RNA sequencing was performed on Il17rafl/fl 

and Il17rafl/fl x villin cre+ liver cells enriched for mononuclear cells. (n=2 mice/group) (A)TSNE of cell type clustering 

based on K means clustering and cell-specific gene expression. There is minor overlap between NK and T cell 

populations. (B) Violin plots of Ifng, Cxcl9, and Cxcl10 expression in Il17rafl/fl (“Neg”) and Il17rafl/fl x villin cre+ 

(“Pos”) liver datasets. All violin plots displayed (B) show gene expression significantly increased in Il17rafl/fl x villin 

cre+ (“Pos”) with a p < 0.05 by Wilcoxon rank sum test. (C) TSNE of Ifng expressing cells in Il17rafl/fl and Il17rafl/fl 

x villin cre+ liver datasets colored according to relative expression level. (D-E) Flow cytometry analysis of liver cells 

of littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice at the naïve state and 5 hours post IV Con A (25mg/kg) injection. 

(n=2-4 mice/group) (D) Representative flow cytometry plots. (E) Number of live IFNγ+ cells, live IFNγ+TCRβ+ cells, 

live IFNγ+TCRβ- cells, and live IFNγ+ NK Cells (gated on CD90+TCRβ-NK1.1+). (F) Total liver cell number plotted 

as fold change over Il17rafl/fl. (n= 3-16 mice/group).  (G) Livers from wildtype C57BL/6 mice were harvested and 

enriched for mononuclear cells. Cells were stimulated ex vivo with varying concentrations of TLR ligands (lipoteichoic 

acid (LTA), flagellin (FLA), lipopolysaccharide (LPS), or CpG) ± Con A (5μg/mL). IFNγ was measured in culture 

supernatants at 24 hours by Luminex. (n=2 replicates/condition). (H-I) Livers from naive littermate Il17rafl/fl and 

Il17rafl/fl x villin cre+ mice were harvested and enriched for mononuclear cells. Cells were stimulated ex vivo with 

1μM CpG for 4 hours plus an additional 3 hours with brefeldin A, and then analyzed by flow cytometry. (H) 

Representative FACS plots. (I) Number of live IFNγ+ cells, CD4+ IFNγ+ cells (gated on live CD90+TCRβ+), and 

CD8+ IFNγ+ cells (gated on live CD90+TCRβ+). (n=3-4 mice/group). (E-G, I) Data are represented as mean + SEM. 

p<0.05*, <0.01**, <0.001***, <0.0001**** (Unpaired T test, Two-Way ANOVA with multiple comparisons, 

Multiple T tests) 
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To confirm this at the protein level, we performed flow cytometry at the naïve state and 5 

hours post-Con A injection (Figure 2-7D-E). There was a greater number of IFNγ+ cells in the 

liver of Il17rafl/fl x villin cre+ mice after Con A as compared to littermate controls (Figure 2-7D-

E). This was due to significant increases in IFNγ-producing TCRβ- cells, namely NK cells, and 

trends toward increased IFNγ-producing TCRβ+ cells (Figure 2-7E). Though there were no 

differences in the percentage of IFNγ-producing cells, Il17rafl/fl x villin cre+ mice displayed an 

increase in actual IFNγ+ cell number due to a 25-30% increase in liver cellularity observed both 

at the naïve state and 5 hours after Con A (Figure 2-7F). These differences were eliminated upon 

cohousing, suggesting these IFNγ changes were microbiome-dependent (Figure 2-8). 
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Figure 2-8. Cohousing eliminates differences in liver IFNγ between Il17rafl/fl x villin cre+ mice and floxed 

controls. 

Livers from Il17rafl/fl and Il17rafl/fl x villin cre+ mice at the naïve state and 5h-post Con A were harvested, enriched 

for mononuclear cells, and analyzed via flow cytometry (n = 3-4 mice/group. (A) Number of IFNγ+ cells (gated on 

live cells). (B) Number of IFNγ+TCRβ- cells (gated on live CD90+). (C) Representative FACS plots. (D) Number of 

IFNγ+TCRβ+ cells (gated on live CD90+). (E) Total liver cell count per gram of tissue.  Data are represented as mean 

+ SEM. p<0.05*, <0.01**, <0.001***, <0.0001**** (Two-Way ANOVA with multiple comparisons). 
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To confirm that CpG DNA can induce IFNγ in the liver, we harvested livers from naïve 

wildtype C57BL/6 mice, enriched for mononuclear cells, and stimulated with increasing 

concentrations of CpG DNA or other TLR ligands. Moreover, to assess whether these ligands can 

synergize with Con A, each TLR ligand was tested in the absence or presence of Con A. CpG 

DNA, LPS, and lipoteichoic acid (LTA), a TLR2 ligand, all induced IFNγ responses (Figure 2-

7G). In contrast, flagellin (FLA), a TLR5 ligand, did not induce IFNγ responses (Figure 2-7G). 

Even at low concentrations, CpG DNA induced strong IFNγ responses, which added to IFNγ 

responses with Con A alone (Figure 2-7F). These data confirmed that CpG DNA is a potent inducer 

of liver IFNγ and suggested that CpG DNA may not only contribute to the elevated IFNγ observed 

in Il17rafl/fl x villin cre+ mice in vivo but synergize with Con A to enhance responses and worsen 

disease. 

To assess differences in CpG-induced IFNγ responses and determine the cellular source of 

IFNγ, Il17rafl/fl x villin cre+ and littermate control livers were stimulated with CpG DNA ex vivo 

and analyzed by flow cytometry. Interestingly, there was already a slight increase in IFNγ+ cells 

in Il17rafl/fl x villin cre+ liver cells cultured in media alone (Figure 2-7H-I). This supported our 

hypothesis that the elevated CpG DNA at baseline may be inducing inflammatory cytokines 

locally. After CpG DNA treatment, the elevated IFNγ became more pronounced (Figure 2-7I), 

with much of the IFNγ proportionally coming from CD4+ and CD8+ T cells (Figure 2-7I, Figure 

2-9). Of these cell populations, Il17rafl/fl x villin cre+ mice demonstrated significantly increased 

CD8+ IFNγ producers (Figure 2-7I).  
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Figure 2-9. CD4 and CD8 T cells comprise the majority of IFNγ+ cells following CpG DNA stimulation. 

Livers from naive littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice were harvested and enriched for mononuclear 

cells. Cells were stimulated ex vivo with 1μM CpG for 4 hours plus an additional 3 hours with brefeldin A, and then 

analyzed by flow cytometry. Percent (A) and actual cell number (B) of IFNγ+ cells by cell type (gated on live IFNγ+ 

cells). Data are represented as mean + SEM. (n=3-4 mice/group). p<0.05*, <0.01**, <0.001***, <0.0001**** 

(Multiple T tests per row). 

 

 

Taken together, these data suggest that in addition to having more CpG DNA in their livers 

at baseline, intestinal specific knockouts demonstrate a baseline low-level elevation in IFNγ and 

enhanced responses to CpG DNA. This then prompted the question of what factors were present 

in Il17rafl/fl x villin cre+ mice that were responsible for enhancing IFNγ responses. In addition, 

TLR9 is not highly expressed on T cells or NK cells, potentially implicating an intermediate factor 

to facilitate these IFNγ responses to CpG DNA. 
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2.3.4  Intestinal IL-17RA constrains hepatic and intestinal IL-18. 

Single cell RNA sequencing also revealed increased Il18 expression in Il17rafl/fl x villin 

cre+ livers (Figure 2-10A-B). IL-18 has been implicated in many inflammatory conditions such as 

macrophage activation syndrome, rheumatoid arthritis, and hepatitis (207–209). We chose to 

investigate IL-18 further due to its established ability to enhance IFNγ production (207, 210).  

Within the liver, bacterial products like CpG DNA have been shown to activate cells close 

to the hepatic vasculature, such as Kupffer cells and hepatic stellate cells (159, 211–214). Indeed, 

analysis of the single cell sequencing data showed that Il18 was expressed mainly in Kupffer cells, 

cholangiocytes, and to a lesser extent, a non-Kupffer cell monocyte/macrophage population 

(Figure 2-10A). Consistent with the single cell RNA sequencing data, we observed increased Il18 

transcript in the liver by qRT-PCR and IL-18 protein in liver homogenate and serum of naïve 

Il17rafl/fl x villin cre+ mice (Figure 2-10C-E). 

Interestingly, we also observed elevated Il18 transcript in the small intestine of Il17rafl/fl x 

villin cre+ mice (Figure 2-10F), suggesting that the elevated liver IL-18 may be coming from local 

hepatic IL-18 production as well as intestinal IL-18 through the portal circulation. Furthermore, 

neomycin treatment in the drinking water (which depletes gram-negative bacteria) decreased 

serum IL-18, providing additional support for not just intestinal involvement, but specifically 

microbiome involvement in IL-18 regulation (Figure 2-10G).   

 



 64 

 

Figure 2-10. Intestinal IL-17RA constrains hepatic and intestinal IL-18. 

(A-B, J) Ninety minutes after IV concanavalin A (25mg/kg), single cell RNA sequencing was performed on Il17rafl/fl 

and Il17rafl/fl x villin cre+ liver cells enriched for mononuclear cells. (n=2 mice/group) (A) TSNE of Il18 expressing 

cells in Il17rafl/fl and Il17rafl/fl x villin cre+ liver datasets colored according to relative expression level. TSNE of cell 

type clustering for reference (Identical to Figure 3A). (B) Violin plot of Il18 expression in Il17rafl/fl (“Neg”) and 

Il17rafl/fl x villin cre+ (“Pos”) liver datasets. (C-F) In naïve littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice, liver 

Il18 transcript (C), liver IL-18 (D), serum IL-18 (E), and terminal ileum Il18 (F) was measured. (G) Serum IL-18 was 

measured after mice were treated with 5 days of 1g/L neomycin in drinking water ad libitum. (H-I) Liver cells of naïve 

wildtype C57BL/6 mice (H) or littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice (I) were enriched for mononuclear 
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cells and stimulated with CpG (1μM) ± anti-IL-18 (5μg/mL) for 24 hours. IL-18 (H) and IFNγ (I) were measured in 

culture supernatants by ELISA. (J) Violin plots of various gene expression levels in Il17rafl/fl (“Neg”) and Il17rafl/fl x 

villin cre+ (“Pos”) liver single cell RNA sequencing 90 minutes post IV Con A. All violin plots displayed (B, J) show 

gene expression significantly increased in Il17rafl/fl x villin cre+ (“Pos”) with a p < 0.05 by Wilcoxon rank sum test. 

(C-I) Data are represented as mean + SEM. (n=3-8 mice/group). p<0.05*, <0.01**, <0.001***, <0.0001**** 

(Unpaired T Test, Two-Way ANOVA with Multiple Comparisons Test)  

 

 

To assess whether CpG DNA plays a role in the elevated hepatic IL-18 levels, hepatic 

mononuclear cells were stimulated ex vivo with CpG DNA. Indeed, we observed IL-18 induction 

after CpG DNA stimulation (Figure 2-10H). Moreover, CpG-induced IFNγ was decreased ex vivo 

by treatment with anti-IL-18 antibody, suggesting that CpG DNA is inducing liver IFNγ in an IL-

18 dependent manner (Figure 2-10I).  To assess the contribution of IFNγ to exacerbated disease 

gut-specific knockout mice, Il17rafl/fl x villin cre+ mice were treated with anti-IFNγ prior to Con 

A injection. Interestingly, blockade of IFNγ did not ameliorate disease (Figure 2-11A) despite 

confirmation of IFNγ neutralization by serum ELISA (Figure 2-11B). Because of this, we 

examined other downstream IL-18 targets that may be contributing to disease. 
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Figure 2-11. IFNγ blockade did not ameliorate hepatitis in Il17rafl/fl x villin cre+ mice. 

 (A) Con A (25mg/kg) was injected IV into Il17rafl/fl x villin cre+ mice treated with Anti-IFNγ or control two hours 

prior to Con A injection. (A) Serum ALT at 8h post injection (n = 9-13 mice/group). (B) Serum IFNγ at 8h post 

injection as measured by ELISA (n = 3-5 mice/group). Data are represented as mean + SEM. (n=3-8 mice/group). 

p<0.05*, <0.01**, <0.001***, <0.0001**** (Unpaired T Test) 

2.3.5  IL-18-induced FasL exacerbates liver inflammation. 

Fas ligand (FasL) has been strongly implicated in Con A hepatitis, as knockout of either 

Fas or Fasl is sufficient to ameliorate disease (215–217). Within the liver, Fasl was mainly 

expressed by T cells, NK cells, and NKT cells (Figure 2-12). In addition to increased Fasl in 

Il17rafl/fl x villin cre+ mice by scRNAseq (Figure 2-10J), we observed increased FasL+ cells in the 

liver of naïve Il17rafl/fl x villin cre+ mice by flow cytometry (Figure 2-13A). There was also more 

FasL produced per cell as measured by geometric mean fluorescence intensity (gMFI) (Figure 2-

13B-C). These differences were eliminated upon cohousing, suggesting these FasL changes were 

microbiome-dependent (Figure 2-14). 
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Figure 2-12. Fasl is expresed by liver T cells, NK cells, and NKT cells. 

Single cell RNA sequencing was performed on Il17rafl/fl and Il17rafl/fl x villin cre+ liver cells enriched for mononuclear 

cells 90min after IV Con A (25mg/kg). (n=4 mice). (A)TSNE of cell type clustering based on K means clustering and 

cell-specific gene expression. (B) TSNE of Fasl expressing cells colored according to relative expression level. 

 

 

To test whether increases in FasL contributed to Con A hepatitis, we treated mice with anti-

FasL one hour prior to Con A injection. Results suggested that anti-FasL treatment ameliorated 

disease in gut-specific knockout mice as measured by serum ALT and TUNEL staining (Figure 2-

13D-F). To investigate whether IL-18 can induce liver FasL, livers of naïve littermate Il17rafl/fl x 

villin cre+ mice and floxed controls were enriched for mononuclear cells, stimulated ex vivo with 

IL-18 ± anti-IFNγ, and analyzed by flow cytometry (Figure 2-13G-H). While there were no 

significant differences between responses of Il17rafl/fl x villin cre+ mice and floxed controls, results 

showed that IL-18 stimulated FasL production in TCRβ+ cells in an IFNγ-independent manner 

(Figure 2-13G-H). 



 68 

 

Figure 2-13. IL-18-induced Fasl exacerbates liver inflammation. 

(A-C) Flow cytometry analysis of FasL in livers cells of naïve littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice (n=7-

11 mice/group). (A) Number of live FasL+ cells plotted as fold change over of Il17rafl/fl. (B) FasL geometric mean 

fluorescence intensity (gMFI) of live FasL+ cells. (C) Representative histogram of FasL+ cells. (D-F) Wildtype and 

Il17rafl/fl x villin cre+ mice were treated with IV anti-FasL (250-500μg/mouse) one hour prior to IV concanavalin A 

(25mg/kg). (D) Serum alanine aminotransferase (ALT) was measured 8 hours post IV Con A. (E) Quantification of 

TUNEL staining at 8 hours post Con A. (F) Representative images of TUNEL-stained liver histology at 8 hours post 

Con A. (G-H) Livers from naive littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice were harvested and enriched for 

mononuclear cells. Cells were stimulated ex vivo with 50ng/mL IL-18 ± 5μg/mL anti-IFNγ (αIFNγ) and analyzed by 

flow cytometry. Percent (G) and actual number (H) of TCRβ+FasL+ cells (gated on live CD90+ cells). Lines connect 

paired samples. Each dot/line represents one mouse. (A-B, D-E) Data are represented as mean + SEM. p<0.05*, 

<0.01**, <0.001***, <0.0001**** (Unpaired T Test, Two-Way ANOVA with multiple comparisons test). 
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Figure 2-14. Cohousing eliminated liver FasL differences between Il17rafl/fl x villin cre+ mice and floxed controls. 

Livers from Il17rafl/fl and Il17rafl/fl x villin cre+ mice at the naïve state and 5h-post Con A were harvested, enriched 

for mononuclear cells, and analyzed via flow cytometry (n = 3-4 mice/group). Percent (A) and number (B) of FasL+ 

cells (gated on live cells). (C) Representative FACS plots. (D) FasL gMFI (gated on live FasL+ cells). (E) 

Representative histograms. Data are represented as mean + SEM. p<0.05*, <0.01**, <0.001***, <0.0001**** (Two-

Way ANOVA with multiple comparisons). 

2.3.6  Anti-IL18 mitigates liver injury in intestinal IL-17RA-deficient mice. 

Finally, to assess whether the elevated IL-18 in Il17rafl/fl x villin cre+ mice was contributing 

to worsened liver disease, we treated Il17rafl/fl x villin cre+ mice and littermate controls with anti-

IL-18 or isotype control one day prior to Con A injection. Anti-IL-18 treatment decreased liver 

inflammation in Il17rafl/fl x villin cre+ mice to that of wildtype mice as measured by serum ALT 

(Figure 2-15A). Liver pathology correspondingly showed reduced areas of cell death in the liver 

parenchyma (Figure 2-15B-C). Quantification of TUNEL staining confirmed that cell death in 

Il17rafl/fl x villin cre+ mice was substantially reduced to that of littermate floxed controls (Figure 
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2-15B). Furthermore, anti-IL-18 treatment reduced liver Ifng and Fasl transcript in Il17rafl/fl x villin 

cre+ mice 8 hours post-Con A as measured by qRT-PCR (Figure 2-15D-E). 

 

 

Figure 2-15. Anti-IL18 mitigates liver injury in intestinal Il17RA deficient mice. 

Littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice were pre-treated with anti-IL-18 (0.5mg/mouse) one day prior to 

IV concanavalin A (Con A) (25mg/kg) and sacrificed at 8 hours post Con A (n=7-9 mice/group). (A) Serum alanine 

aminotransferase (ALT). (B) Quantification of TUNEL staining. (C) Representative images of TUNEL-stained liver 

histology. Liver Ifng (D) and Fasl (E) gene expression as measured by qRT-PCR. Data are represented as mean + 

SEM. p<0.05*, <0.01**, <0.001***, <0.0001**** (Two-Way ANOVA with multiple comparisons test). 

2.4 Discussion 

Our results provide evidence that perturbation of intestinal IL-17 signaling is sufficient to 

exacerbate liver inflammation. Abrogation of intestinal IL-17RA disrupted the intestinal 
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microbiota and promoted translocation of bacterial products to the liver. Together, this induced 

IL-18 production and subsequent lymphocyte activation and cell death to worsen hepatitis.  

Numerous studies have implicated Th17 cells in liver inflammation. For example, both 

autoimmune and viral hepatitis patients displayed elevated serum IL-17 (105–107). In Con A 

hepatitis, our lab previously showed that global IL-17RA knockout mice (Il17ra-/-) were protected 

from disease (186).  However, the role of Th17 cells in liver disease is complex. Here, by using 

intestinal epithelium-specific knockout mice, we uncouple intestinal IL-17 signaling from 

systemic signaling to reveal a novel protective role of intestinal IL-17RA in mitigating liver 

inflammation. Intestinal-specific IL-17RA knockout mice did have elevations in serum IL-17A 

(48) capable of signaling outside of the intestine to worsen disease. However, there were 

conflicting reports when IL-17A was reduced through genetic manipulation or antibody blockade 

during Con A hepatitis (186, 218–220). These discrepancies may be due to institutional differences 

in the microbiome. Alternatively, it may be due to the contribution of other IL-17RA cytokines. 

Our studies suggest this could also be a result of intestinal IL-17 signaling disruption with 

downstream consequences detrimental to liver inflammation. This unique contribution of intestinal 

IL-17 relative to systemic IL-17 paralleled findings in the experimental autoimmune 

encephalomyelitis (EAE) mouse model of multiple sclerosis described in Chapter 3 of this 

dissertation. In EAE, global IL-17RA knockout was protective (126), while intestinal specific IL-

17RA knockout was detrimental (48), further validating the importance of intestinal IL-17 

signaling in extra-intestinal diseases. 

While reports have separately associated Th17 cells and the microbiome to liver 

inflammation, our study adds to the existing literature by linking these factors together in the 
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context of liver disease (98, 108, 221, 222). Our data showed that there were no differences in liver 

IL-17 in gut-specific knockout mice to exacerbate disease (Figure 2-16).  

 

 

Figure 2-16. Liver IL-17 is not increased in Il17rafl/fl x villin cre+ mice at the naïve state or 5h-post Con A. 

(A) Liver Il17a expression in Il17rafl/fl and Il17rafl/fl x villin cre+ mice at the naïve state and 5h-post Con A as measured 

by qRT-PCR (n = 3-4 mice/group). (B) IL-17 in liver homogenate of naïve Il17rafl/fl and Il17rafl/fl x villin cre+ mice 

were measured by Luminex (n = 4-8 mice/group). (C) Ninety minutes after IV Con A (25mg/kg), single cell RNA 

sequencing was performed on Il17rafl/fl (“Neg”) and  Il17rafl/fl x villin cre+ (“Pos”) liver cells enriched for mononuclear 

cells. (n=2 mice/group). TSNE of Il17 expressing cells colored according to relative expression level and violin plot 

of Il17 expression. (D-F) Percent (D), number (E), and gMFI (F) of live IL-17+ cells in the livers Il17rafl/fl x villin 

cre+  mice at the naïve state and 5h-post Con A (n = 2-4 mice/group). Data are represented as mean + SEM. p<0.05*, 

<0.01**, <0.001***, <0.0001**** (Two-Way ANOVA with multiple comparisons, Multiple T tests, Unpaired T test) 

 

Rather, the data suggested that disruption of intestinal IL-17RA promoted the overgrowth of gram-

negative, IgA unbound bacteria that exacerbated liver inflammation. This corroborates previous 

studies showing that germ free mice and mice treated with gentamicin are protected in Con A 

hepatitis (108, 178). Ruminococcaceae, a vancomycin sensitive gram-positive bacteria, was 
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previously associated with worsened liver inflammation (178), though we did not observe 

differences in this family within Il17rafl/fl x villin cre+ mice. Interestingly, at the naïve state, 16S 

data mainly showed differences in Sfb. However, we showed that vancomycin treatment, which 

eliminated Sfb and other gram-positive bacteria including Ruminococcaeae, had no effect on Con 

A hepatitis. Moreover, others showed that Sfb- wildtype mice sourced from Jackson Laboratories 

actually displayed worse Con A hepatitis than Sfb+ wildtype mice sourced from Taconic (178). 

Taken together, these data suggested that Sfb overgrowth as a result of disrupted enteric IL-17RA 

signaling is not worsening disease in this model. Rather, disruption of intestinal IL-17 receptor 

signaling allowed for greater translocation of bacterial products to the liver, namely TLR9 

agonists, to exacerbate disease. Because intestinal Th17 signaling plays a critical role in 

modulating bacteria close to the epithelium, it is also possible that a lack of intestinal IL-17R led 

to the general loss of host regulation of these bacteria as a whole, rather than specific bacteria. 

After Con A, Il17rafl/fl x villin cre+ mice did display a bloom of Enterobacteriaceae, which have 

particularly stimulatory CpG DNA (223). However, this overgrowth may simply be a consequence 

of inflammation as Enterobacteriaceae is known to outcompete other bacteria and bloom in 

inflammatory environments (224).   

In addition to alterations in the intestinal microbiome, other groups have also observed 

increased bacterial translocation in both patients with and mouse models of liver inflammation 

(103, 108, 182). However, the downstream effects on local hepatic immune cell populations 

remain unclear. Here, we show that at the naïve state, disruption of intestinal IL-17R signaling was 

sufficient to increase flux of bacterial products, specifically CpG DNA, into the liver despite no 

functional manifestation of intestinal barrier defect (Figure 2-17).  
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Figure 2-17. Naïve Il17rafl/fl x villin cre+ mice do not exhibit baseline intestinal barrier defects. 

Serum FITC Dextran (4kDA) concentration in control saline-gavaged mice (n=2) and FITC dextran-gavaged Il17rafl/fl 

and Il17rafl/fl x villin cre+ mice (n=3mice/group). Data are represented as mean + SEM. p<0.05*, <0.01**, <0.001***, 

<0.0001**** (One-Way ANOVA with multiple comparisons) 

 

In addition, preliminary data showed that the CpG DNA signal in the liver homogenate 

was not sensitive to DNase treatment, raising the possibility of CpG DNA transport into the liver 

via bacterial outer membrane vesicle (OMV) release (Figure 2-18). This aligns with our data 

implicating gram-negative bacteria in our model, as gram-negative bacteria are producers of 

OMVs. Our data and a study by Jiang et al. both demonstrated that CpG DNA worsened Con A 

hepatitis (147). There was a conflicting report detailing hepatitis attenuation after CpG DNA 

stimulation (225), but we postulate this is due to differences in the CpG DNA and treatment 

regimen used in the experiments. In our study, we showed that CpG DNA induced IL-18-

dependent liver IFNγ production from T cells, providing novel evidence that intestinal IL-17 

signaling may play a role in constraining TLR9 induced-Type I responses in the liver.  
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Figure 2-18. TLR9 ligands in Il17rafl/fl and Il17rafl/fl x villin cre+  liver homogenate are DNase-resistant. 

Liver homogenate from naïve littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice were treated with DNase or vehicle 

control, then plated on mTLR9 SEAP reporter cells. (n=4-8 mice/group). Controls: DNase-sensitive E. coli dsDNA, 

Nuclease-resistant CpG DNA, nuclease free sterile H2O. Absorbance of supernatants was measured and represented 

as ratio over null/unstimulated cells. Data are represented as mean + SEM. p<0.05*, <0.01**, <0.001***, 

<0.0001**** (Two-Way ANOVA with multiple comparisons) 

 

Il17rafl/fl x villin cre+ mice also exhibited increased IL-18 production in the intestine. This 

is consistent with previous reports that IL-18 is produced by intestinal epithelial cells in response 

to IL-22 (161). Indeed, we have previously shown that disrupted intestinal IL-17RA signaling 

increased IL-22+ cells in the small intestine lamina propria (48). Interestingly, serum IL-18 was 

partially decreased with neomycin treatment. Therefore, in addition to elevated IL-22, intestinal 

IL-17 signaling may regulate IL-18 through the microbiota. To further support the potential 

contribution of intestinal IL-18 in disease exacerbation, we have preliminary data with Con A in 

Nlrc4mutIl18bp-/- mice. In these mice, IL-18 binding protein (IL-18BP), which is necessary for 

regulatory inhibition of IL-18, is knocked out, and the NLRC4 T337S mutation causes excess 

inflammasome-mediated IL-18 from the intestine (208). At the same concentration, these mice 
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exhibited lethal Con A hepatitis, while the Nlrc4mut mice and Il18bp-/- mice survived (Figure 2-19). 

This suggested that excess IL-18 partnered with decreased systemic inhibition of IL-18 promotes 

hepatitis, and implies a pathogenic role for excess intestinal IL-18 in Il17rafl/fl x villin cre+ mice.  

 

   

Figure 2-19. Excess intestinal IL-18 partnered with decreased systemic IL-18 control exacerbate hepatitis.  

Con A (25mg/kg) was injected intravenously into wildtype (WT) B6 mice, NLRC4 mutants (Nlrc4mut), IL-18 binding 

protein knockouts (Il18bp-/-), and mice having both the NLRC4 mutation and IL-18BP deficiency (Nlrc4mutIl18bp-/-). 

Survival Curve (n = 3-10 mice/group). p<0.05*, <0.01**, <0.001***, <0.0001**** (Log-rank (Mantel-Cox) test) 

 

The microbiome can influence immunity through direct mechanisms (i.e. activation of 

TLRs, NOD receptors) and indirect mechanisms (i.e. metabolites). Here, we provided evidence of 

CpG DNA inducing liver IL-18. Previous studies have described an indirect regulatory relationship 

between IL-18 and the intestinal microbiota in which unique metabolites derived from healthy and 

dysbiotic microbiota induced IL-18 production from the intestinal epithelium (226, 227). It is 

possible that disrupted intestinal IL-17 signaling and subsequent alterations in the microbiome 

may have induced IL-18 production through these mechanisms as well. Broadly, our data imply 

that perturbations in the microbiome and translocation of microbial products can enhance systemic 

IL-18 levels and affect extra-intestinal pathologies. 
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Excess IL-18 in Il17rafl/fl x villin cre+ mice also induced liver Fasl expression, increasing 

cell death and worsening hepatitis. This is consistent with reports implicating Fas-FasL in Con A 

hepatitis. Indeed, knockout of either Fas or FasL ameliorated disease within this model (215–217). 

In other model systems such as acetaminophen-induced liver injury, IL-18 has also been shown to 

induce Fasl expression (171, 172, 228). Here, we demonstrated that IL-18 induced FasL in an 

IFNγ-independent manner. Therefore, while IL-18 is able to independently induce FasL and IFNγ, 

our data suggest that the elevated IFNγ in Il17rafl/fl x villin cre+ mice was more a reflection of 

increased lymphocyte activation, and FasL was the major IL-18-downstream contributor to disease 

exacerbation. Beyond our model, we established a novel connection between intestinal IL-17 

signaling and hepatic FasL, potentially implicating intestinal IL-17 in the many liver diseases 

linked to Fas-FasL associated cell death including fulminant, alcoholic, and viral hepatitis as well 

as liver carcinoma and fibrosis (229–232).  

There are various unanswered questions remaining. It is unclear if the microbiome is 

influencing IL-18 levels indirectly through bacterial metabolites, cytokines (161), or the 

inflammasome (233). Particularly given the lack of changes observed by 16S sequencing, 

metabolomics to assess bacterial metabolites and metatranscriptomics to investigate changes in 

bacterial behavior would be important to further characterize how the microbiome is influencing 

disease within our model. There is also a regulatory relationship between the liver and intestinal 

microbiome through the modulation of bile acid metabolism (88). Changes in bile acid 

composition within the liver alter the intestinal microbiome, while bacterial metabolites influence 

bile acid production (88, 99, 234). Alternations in intestinal IL-17RA signaling may potentially 

disrupt this relationship to worsen disease as well. Lastly, it appears that the local hepatic immune 

cell populations Il17rafl/fl x villin cre+ mice were poised to secrete more inflammatory cytokines 
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upon stimulation, whether by CpG DNA, Con A, or anti-CD3/CD28 (Figure 2-10I, Figure 2-20). 

Further examination of the epigenetic landscape of these cells may provide insight into how 

alterations in the intestinal microbiome and subsequent bacterial products influence immunity 

through modulation of the epigenome.   

 

 

Figure 2-20. Liver mononuclear cells from naïve Il17rafl/fl x villin cre+ exhibit increased IFNγ upon ex vivo 

stimulation. 

Liver cells of naïve littermate Il17rafl/fl and Il17rafl/fl x villin cre+ mice were enriched for mononuclear cells and 

stimulated with media (unstimulated control), Con A (5μg/mL), or anti-CD3/CD28 beads for 72 hours. IFNγ was 

measured in culture supernatants by luminex. (n = 3-9mice/group).  

 

While the Concanavalin A model certainly has its limitations as with other animal models 

of disease, the data within the literature suggest our work is consistent with observations in human 

disease. There are multiple reports showing the Con A model parallels aspects of autoimmune, 

viral, and fulminant hepatitis. Specific to our data, there is evidence showing that IFNγ and Fas 

were increased in bone marrow mononuclear cells of patients with autoimmune hepatitis (AIH) 

(235). Analysis of liver tissue and peripheral blood lymphocytes of AIH patients further confirmed 

elevated Fas/FasL compared to healthy controls (236, 237). Furthermore, IFNγ in liver biopsies 

(238) and serum IL-18 (239) were both elevated and correlated with disease severity. In chronic 



 79 

hepatitis C, Zeremski et al. showed that intrahepatic levels of IFNγ-inducible chemokines 

including CXCL9 and CXCL10 were increased as compared to controls and associated with 

disease severity (240). Similar to AIH, serum IL-18 levels were also elevated and correlated with 

severity of liver damage (241). In fulminant hepatitis, there were increases in circulating IFNγ+ 

CD8 T cells (242) and serum IL-18 (243). In addition, a recently published report showed that 

excessive IL-18 due to genetic IL-18BP deficiency in human patients can promote fulminant viral 

hepatitis (162). As such, we believe the mechanisms described in our work are potentially 

translatable to clinical hepatitis in patients.  

Our data also have implications on hepatic diseases and illnesses beyond the gut-liver axis 

in conditions with “leaky gut” and increased bacterial translocation. This study reveals potential 

immune consequences of the subclinical bacteremia observed in many patients.  For example, in 

HIV/AIDS, much emphasis has been placed on leakage of LPS across the gut barrier causing 

wasting and chronic inflammation (181). Our data suggests extra-intestinal TLR9 ligand 

dissemination is regulated by intestinal IL-17R signaling and may therefore be another underlying 

mechanism in HIV/AIDS liver dysfunction (244).  Taken together, the connection our data 

established between intestinal Th17 cells, the microbiome, and hepatic immune signaling elucidate 

new therapeutic avenues to explore and target to treat hepatitis and other extra-intestinal diseases. 
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2.5 Working Model 

 

 

Figure 2-21. Working Model 

At the naïve state, intestinal epithelial-specific IL-17RA-deficient mice (Il17rafl/fl x villin cre+ mice) exhibited 

microbiome dysbiosis and increased translocation of bacterial products (CpG DNA) from the gut to the liver to drive 

intestinal and hepatic IL-18 production, respectively. Upon induction of Concanavalin A (Con A)-mediated hepatitis, 

absence of enteric IL-17RA signaling exacerbated hepatitis and hepatocyte cell death. IL-18 was necessary for disease 

exacerbation and associated with increased activated hepatic lymphocytes based on Ifng and Fasl expression. Thus, 

intestinal IL-17R regulates translocation of TLR9 ligands and constrains susceptibility to hepatitis in a microbiome-

dependent manner. 



 81 

3.0 Gut-Central Nervous System Axis: Disruption of Intestinal Th17 Signaling and the 

Microbiome Exacerbate Autoimmune Neuroinflammation 

Parts of this chapter have been published in the following article:  

Kumar, P., L. Monin, P. Castillo, W. Elsegeiny, W. Horne, T. Eddens, A. Vikram, M. Good, A. A. 

Schoenborn, K. Bibby, R. C. Montelaro, D. W. Metzger, A. S. Gulati, and J. K. Kolls. 2016. 

Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota 

and Autoimmune Inflammation. Immunity 44: 659–671. 

3.1 Introduction 

Connections between the brain and intestine have been historically described. In early 

experiments, Ivan Pavlov showed that visual and auditory stimuli could elicit intestinal secretions 

in dogs (245). In psychiatric disease, patients with major depression were more likely to develop 

intestinal symptoms such as functional gastrointestinal diseases (FGID), while patients with FGID 

were more likely to develop depressive symptoms (246). This interaction of the gut-brain axis is 

also observed in neurologic disease. For example, the intestinal microbiome altered IL-17 

production in γδ T cells to affect neurologic outcomes in a mouse model of ischemic stroke (247). 

This chapter will focus on the gut-central nervous system (CNS) axis in the context of Multiple 

Sclerosis (MS).  
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3.1.1  Overview of Multiple Sclerosis 

MS is a chronic autoimmune demyelinating disease of the central nervous system. Signals 

are communicated within the CNS and to the peripheral nervous system (PNS) through action 

potentials transmitted along axons. Oligodendrocytes, specialized glial cells in the CNS, extend 

processes to support and insulate axons, forming the myelin sheath. Myelin dramatically increases 

the signal transduction through an axon to facilitate effective communication within the brain and 

spinal cord and to the rest of the body. In MS, the myelin sheath around the nerves is damaged 

resulting in motor, sensory, and sometimes cognitive dysfunction. In addition to demyelination, 

there is often inflammation and axonal loss due to the lack of protection and support offered by 

the myelin sheath (248, 249). The etiology of the disease remains unknown, though it is generally 

accepted that it is immune-mediated involving autoreactive lymphocyte activation, microglial 

activation, and chronic degeneration (249).  

3.1.1.1 Epidemiology  

MS is the most prevalent disabling neurologic disease in young adults, affecting nearly 1 

million people in the United States and about 2.5 million people worldwide (250–253). Like other 

autoimmune diseases, MS is more common in women with an estimated female to male ratio of 

about 3-4:1 (254). Disease onset is 28-31 years old on average but varies with the type of MS 

(255). There are a number genetic polymorphisms associated with disease, most notably HLA-

DRB1 (256). Interestingly, there is only a 25.3% concordance rate among monozygotic twins 

(257), suggesting the role of TCR/BCR sequence variation or environmental factors in disease risk 

and development. Indeed, this is one reason why we are investigating the microbiome in the 

context of MS pathogenesis.  
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3.1.1.2 Disease Manifestations 

MS can be broken down into four subtypes: clinically isolated syndrome, relapsing-

remitting MS, primary progressive MS, and secondary progressive MS (249). The clinically 

isolated syndrome represents the first episode of MS symptoms. Recurrence and progression of 

these symptoms categorizes the disease into one of the other three subtypes which differ on the 

basis of disease activity and rate disease of progression. Relapsing-remitting MS (RRMS) is 

episodic with recovery between each episode. There is often little to no disease progression 

between exacerbations. However, recovery from each attack can vary, establishing a new baseline 

of neurological disability. Disease symptoms in primary progressive MS (PPMS) advance 

continually from the clinically isolated syndrome, often causing more substantial deterioration due 

to the continuous progression. Secondary progressive MS (SPMS) begins in a pattern resembling 

RRMS but then shifts to a continual progressive decline as seen in PPMS. (249, 258) 

MS typically presents to the clinic between age 15-50 with acute or subacute development 

of symptoms of sensory dysfunction in the limbs, visual loss or disturbances such as diplopia, or 

impaired motor function in the absence of fever or other illness (258). Clinical signs more 

suggestive of MS include the Lhermitte sign (electric shock sensations going down the back or 

limbs when neck is flexed) and the Uhthoff phenomenon (symptom exacerbation as body 

temperature rises with normal activity) (249). While other symptoms may have occurred at initial 

presentation (i.e. bowel dysfunction, gait disturbance), concrete diagnosis of MS is determined per 

the criteria in the following section.  
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3.1.1.3 Diagnosis 

In addition to the clinical symptoms, MS is diagnosed via MRI confirmation. MS typically 

shows focal enhancing lesions in the white matter of brain and/or spinal cord during MRI. 

Diagnosis of MS depends on the fulfillment of the McDonald Criteria shown below (258). 

 

Table 3-1. 2017 McDonald Criteria  

 
 # of lesions with objective clinical evidence Additional data needed for MS diagnosis 

≥2 
clinical 
attacks 

 

≥2 None 
1 (as well as clear-cut historical evidence of a 
previous attack involving a lesion in a distinct 

anatomical location) 
None 

1 
Dissemination in space demonstrated by an 

additional clinical attack implicating a different 
CNS site or by MRI 

1 clinical 
attack 

 

≥2 
 

Dissemination in time demonstrated by an 
additional clinical attack or by MRI 

OR demonstration of CSF-specific oligoclonal 
bands 

1 

Dissemination in space demonstrated by an 
additional clinical attack implicating a different 

CNS site or by MRI 
AND 

Dissemination in time demonstrated by an 
additional clinical attack or by MRI 

OR demonstration of CSF-specific oligoclonal 
bands 

Table sourced from Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of 
the McDonald criteria. Lancet Neurol 2018; 17:162. (258) 
 

3.1.1.4 Prognosis 

Multiple factors are thought to contribute to patient prognosis. Disease type is one factor 

with RRMS having a better prognosis compared to the progressive types. In patients with RRMS, 

early intestinal or bladder-related symptoms, shorter time between the initial and subsequent 

episode,  and early disability are indicative of poor prognosis (259). Increased CNS lesion burden 

and CNS atrophy are also associated with worse disease outcomes (260). In terms of 

demographics, race has been investigated as a potential prognostic factor, but conclusions from 
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these studies remain controversial. Though women are more likely to develop MS, men who 

develop MS are more likely to undergo a more severe disease course (261). In addition, pregnancy 

is associated with an overall decrease in MS relapse during pregnancy with increased risk 

postpartum (262). Interestingly, there are T cell changes during pregnancy (263, 264) as well as 

significant differences in the microbiome that were associated with changes in host inflammation 

and metabolism (265). 

While assessment of these factors are helpful, it is important to note that their prognostic 

reliability remains limited (260). Ongoing research is required to better identify and describe these 

factors to improve disease management. Beyond this, further studies to investigate the etiology of 

disease are critical to develop novel therapeutics strategies.  

3.1.1.5 Treatment 

Acute exacerbations are treated with glucocorticoids with the purpose of shortening the 

episode rather than addressing long term disease course (266). There is also evidence suggesting 

a benefit of plasmapheresis in RRMS acute episodes (249) but not for treatment in the progressive 

MS subtypes. Symptom-specific treatments are prescribed as well to assist with isolated problems 

such as bladder control (266). While both acute management and targeted symptomatic 

interventions are very important for disease management, disease modifying drugs and 

immunotherapies appear to provide more sustained responses. 

Disease-modifying therapies (DMTs) do not constitute as cures, but they can potentially 

affect disease progression and maintenance. A recent 2019 observational study of over 1500 

patients investigated the role of DMTs on prevention of RRMS conversion to SPMS (267). The 

study found that initial treatment with fingolimod, alemtuzumab, or natalizumab lowered the risk 

of RRMS conversion to SPMS as compared to glatiramer acetate and interferon beta. In 
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progressive MS, the suggested DMTs include ocrelizumab, cladribine, and siponimod. A brief 

description of each of the aforementioned therapies are listed below. 

 

Table 3-2. Disease-Modifying Therapies Approved for MS 

Drug Alternative 
Names 

Description Function 

Fingolimod FYT720, 
Gilenya 

Structural analog of 
natural sphingosine 

Prevents lymphocyte egress from lymphoid tissue 
into circulation by activating and subsequently 
downregulating sphingosine-1-phosphate 
receptor (268, 269) 

Alemtuzumab Lemtrada Monoclonal Human 
anti-CD52 

Depletes circulating T and B cells (270–272) 

Natalizumab Tysabri Humanized anti-
α4β1integrin 
monoclonal  

Prevent leukocyte trafficking into the CNS (273–
275) 

Glatiramer 
Acetate 

Copaxone, 
Glatopa 

Mixture of synthetic 
peptides similar to 
myelin basic protein 

Competitive inhibitor of MHC to prevent 
presentation of myelin antigens; promotes 
immunosuppressive responses in CNS (276–278) 

Interferon beta Avonex, Rebif Type 1 interferon, 
Formulations: IFNβ-
1a and IFNβ-1b  

Broad range of anti-inflammatory effects 
including decreasing pro-inflammatory cytokines 
while increasing anti-inflammatory cytokines, 
decreasing cell migration into the CNS, 
promoting nerve growth factor for CNS repair, 
and other effects on T cells, B cells, and DCs 
(279–281) 

Ocrelizumab Ocrevus Recombinant anti-
human CD20 
monoclonal antibody 

B cell depletion (282) 

Cladribine Mavenclad Purine nucleoside 
analogue 

Lymphocyte depletion due to cytotoxic effects on 
cell metabolism and DNA synthesis & repair 
(283) 

Siponimod BAF312, 
Mayzent 

sphingosine 1-
phosphate receptor 
modulator 
 

Prevents lymphocyte egress from lymphoid tissue 
into circulation by activating and subsequently 
downregulating sphingosine-1-phosphate 
receptors 1 and 5 specifically (284) 

 

 

These therapies demonstrate the critical role of the immune system in MS pathogenesis. In 

addition, the above therapies target different aspects of the immune system, emphasizing the 

complexity of disease pathogenesis and the potential benefit of targeting multiple aspects of the 

immune system for effective treatment. To that end, the dissertation studies in this chapter 
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investigate the role of intestinal Th17 cells and the intestinal microbiome in MS pathogenesis with 

the ultimate goal of identifying novel therapeutic strategies.  

3.1.2  Th17 Cells and the Microbiome in Multiple Sclerosis 

Th17 cells and the intestinal microbiome have both been implicated in MS. When 

considering the mechanisms by which these factors can affect disease, it is important to understand 

the barriers limiting contact with CNS as an immunoprivileged site.  

3.1.2.1 Barriers of the CNS 

The CNS is separated from the rest of the body through its three membranes (the dura 

mater, pia mater, and arachnoid membrane) and specialized barriers (Figure 3-1). The blood brain 

barrier (BBB), which includes the blood-leptomeningeal barrier for the purposes of this discussion, 

separates the CNS parenchyma from the CNS vasculature (Figure 3-1A). In this way, the body can 

tightly regulate vascular entry into the CNS by cells and other potentially inflammatory mediators.  

Indeed, the BBB is able to prevent entrance to greater than 98% of antibodies and small molecules 

while maintaining its ability to transport materials out (285). It is comprised of specialized 

endothelial cells and the combination of the parenchymal basement membrane and astrocyte foot 

processes together termed the glia limitans (286). Therefore, should external components breach 

the specialized tight junction network of the BBB vascular endothelial cells, there exists an 

additional barrier unique to the CNS in the form of the glia limitans. Another interface between 

the CNS and periphery is the blood-cerebrospinal fluid barrier (BCSFB) (Figure 3-1B). This is 

located at the choroid plexus within the ventricles of the brain. The choroid plexus is a structure 

derived form of ependymal cells lining the ventricle and includes the epithelial cells that secrete 
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CSF (286). The endothelial cells lining the choroid plexus do not have specialized tight junctions, 

offering a more accessible entry point for lymphocytes into the subarachnoid space containing the 

CSF. It is thought that this degree of accessibility is actually critical for immune surveillance. 

Indeed, this region is rich in antigen presenting cells, and the CSF actually contains a 

proportionately large amount of memory CD4+ T cells relative to the systemic circulation (286, 

287). Especially interesting in the context of these dissertation studies, research from patients with 

non-inflammatory neurological disease showed the presence of skin and gut homing memory T 

cells in the CSF (287). This emphasizes the potential for crosstalk between the gut and the brain 

and suggests direct communication between the two systems via lymphocyte migration.  
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Figure 3-1. CNS Barriers 

(A) The CNS is separated from the rest of the body through its meninges (3 membranes: the dura mater, pia mater, 

and arachnoid membrane) and specialized barriers. The blood-brain barrier separates the CNS parenchyma from the 

CNS vasculature. It is comprised of specialized non-fenestrated endothelial cells and the combination of the 

parenchymal basement membrane and astrocyte foot processes together termed the glia limitans. (B) Another interface 

between the CNS and periphery is the blood-cerebrospinal fluid barrier (BCSFB). This is located at the choroid plexus 

within the ventricles of the brain. The choroid plexus is a structure derived form of ependymal cells lining the ventricle 
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and includes the epithelial cells that secrete CSF. The fenestrated endothelial cells lining the choroid plexus do not 

have specialized tight junctions, offering a more accessible entry point for lymphocytes into the subarachnoid space 

containing the CSF. 

 

 

There are physiological mechanisms to enter the CNS. Trafficking of small molecules, 

antigens, and other potentially immunomodulatory components can occur through passive 

diffusion, transcytosis, or specific transporters located at the BBB/BCSFB (288). Proper 

trafficking of immune cells into the CNS requires expression of specific signaling and adhesion 

molecules on both the part of the entering cell as well as the cells comprising the CNS barriers. 

For example, expression of α4 and β2 integrin expression on the immune cells are required for 

interaction with intercellular and vascular adhesion molecules (i.e. ICAM1-2, VCAM-1) on the 

BBB endothelial cells in order to adhere and commence rolling on the endothelium (286). In EAE, 

integrin β3 is important for CNS migration (289). Studies have also shown that endothelial P-

selectin is required to cross the brain-leptomeningeal barrier (290). Though brain-specific 

chemokine/receptors have not been identified, there are certain chemokines commonly expressed 

in the brain. For example, CCL19 is constitutively expressed by CNS endothelial cells (286), and 

CCL20 is  expressed by the choroid plexus, promoting migration of CCR6+ CD4+ T cells (285). 

Beyond these interactions, studies tracing radioactively labeled resting and active T cells showed 

that lymphocyte activation is necessary to cross the BBB in the spinal cord (291). These 

physiological mechanisms can be manipulated to recruit immune assistance during infection and 

inflammation. Conversely, they can be compromised during disease, allowing aberrant breach the 

brain barriers. 
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In MS and the EAE mouse model, the BBB becomes compromised, permitting increased 

lymphocytic infiltration. The mechanisms through which this disruption occurs is a topic of 

continued investigation. However, there is evidence that matrix metalloproteinases (MMPs) play 

a role. Specifically, MMP2 and MMP9 were shown to disrupt the astrocyte-parenchymal basement 

membrane interaction to decrease the integrity of the glia limitans (292). Lymphocytic breach of 

the BBB is accompanied by proinflammatory changes that induce additional infiltration. When 

autoreactive T cells enter the CNS and encounter their cognate antigen, they set off a positive 

feedback loop in which chemokine and adhesion signaling changes in the CNS barriers promote 

immune cell recruitment to further exacerbate inflammation and subsequent damage (286).  While 

different cells may promote BBB compromise and MS immunopathology, many reports have 

described Th17 cells as a major contributor. 

3.1.2.2 Th17 Cells in Multiple Sclerosis 

Numerous studies have linked Th17 cells to MS pathogenesis. As previously mentioned, 

patients with MS have increased serum IL-17 and increased IL-17 in MS lesions (123, 124). In 

RRMS, there was also a correlation with serum IL-17F levels and 2 year relapse rate (293). In 

terms of the BBB, hallmark Th17 cytokines have been implicated in disruption and infiltration. 

Specifically, in a human brain-derived microvascular endothelial cell model of the BBB, there was 

greater migration of Th17-polarized human CD4+ T cells as compared to Th1- polarized CD4+ T 

cells (294). This study showed that IL-17 and IL-22 stained positively in highly infiltrated MS 

lesions, and that there was an upregulation of IL-17 and IL-22 receptors on the brain endothelial 

cells within these lesions (294). Ex vivo, both cytokines were able to promote migration of 

lymphocytes through the human BBB model, accompanied with increases in CCL2 and CXCL8 
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(294). Together, these human and patient data support a role for Th17 in MS with specific 

involvement in immune infiltration.  

In the EAE model of MS, mice were protected by deficiency of IL-17RA (126), IL-17RC 

(295), and transcription factors required for Th17 differentiation including RORγt, BATF, and 

JUNB (14, 296, 297). However, there are conflicting reports regarding relative contributions of 

IL-17A and IL-17F to EAE (125, 298, 299), raising the possibility of institutional microbiome 

differences contributing to these mixed reports as well as the potential role of other Th17 related 

cytokines in disease pathogenesis.  

Pathogenic Th17 cells that double produce IL-17 and IFNγ or IL-17 and GM-CSF have 

been identified. Mice deficient in IFNγ and knockout of the IFNγ receptor actually developed 

worse EAE, suggesting a protective role of IFNγ in disease pathogenesis (300–302). Conversely, 

GM-CSF has been shown to be detrimental, as GM-CSF deficient mice were resistant to EAE 

(303, 304). Two cytokines known to favor the differentiation of pathogenic Th17 cells are IL-23 

and IL-1β (30). Both cytokines are thought to contribute to EAE pathology. Knockout of IL-1R1 

or IL-1β was protective (305, 306) along with knockout of IL-23RA or IL-23p19 (29, 307). Studies 

have now shown that IL-23 is necessary for in vivo terminal differentiation and maintenance of 

Th17 cells (26, 29). Moreover, Codarri et al. and El-Behi et al. showed that IL-23 (27, 308), master 

Th17 transcription factor Rorγt (308), and IL-1β (27) was required for T cell GM-CSF production 

in EAE. In both reports, GM-CSF from Th17 cells contributed to EAE pathology (27, 308).   

Interestingly, recent work suggested a role for intestinal Th17 cell signaling in MS. The 

study evaluated intestinal biopsies from RRMS patients and healthy controls via flow cytometry 

and found that increased intestinal Th17 cells correlated with MS disease activity based on MRI 

and disability score (309). In addition to this, 16S sequencing of microbial DNA isolated from 
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tissue biopsies showed specific differences in RRMS patients as compared to controls (309), 

providing human data implicating not only intestinal Th17 signaling in MS but the intestinal 

microbiome as well.  

3.1.2.3 Intestinal Microbiome in Multiple Sclerosis 

A number of studies have examined the microbiome in the context of multiple sclerosis. 

Patients with MS exhibit an altered microbiome compared to healthy controls. A metanalysis of 

these works have described an increase in Methanobrevibacter and Enterobacteriaceae in MS 

patients with enrichment of Fecalibacterium prausnitzii and SCFA-producing bacteria such as 

Prevotella and Lachnospiraceae in controls (310). Additional studies have been done in EAE that 

further support the role of the microbiome in MS. Germ-free mice and mice treated with broad 

spectrum antibiotics were protected in EAE (311–313). This included combinations of 

metronidazole, ampicillin, neomycin, and vancomycin as well as kanamycin, colistin, and 

vancomycin. To show that the differences observed in patients may point to the microbiota as a 

cause rather than an association, a fecal microbiota transplant (FMT) was performed from MS 

patients into germ free mice prior to EAE induction. Results showed that mice receiving stool from 

MS patients as compared to healthy controls exhibited worsened EAE clinical scores (129). These 

data are highly suggestive of the microbiota as a contributing factor in MS, but also prompt the 

question of mechanism. 

The ways the microbiota is able to affect health and disease detailed in the initial 

introduction of this dissertation also apply here. There is evidence that the microbiome is 

influencing T cell immunology in EAE. The protection from EAE in germ-free mice and mice 

treated with broad spectrum antibiotics were all associated with a decrease in Th1 and Th17 cells 

partnered with an increase in Tregs (311–313). This suggests that the microbiota plays a role in 
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balancing the Treg population and the Th1/Th17 effector population. Though contradictory to the 

previous data showing increased Tregs in germ free mice, there is also evidence showing that 

SCFAs from the microbiota can promote Treg cell expansion and activation (62). SCFAs have 

been shown to signal through G protein-coupled receptors on Tregs, macrophages, dendritic, and 

intestinal epithelial cells (314, 315). For example, binding of butyrate on GPR109A on 

macrophages and dendritic cells promoted intestinal differentiation of Tregs (315). Moreover 

propionate binding to GPR43 on Tregs enhances intestinal Treg proliferation (314). In EAE, oral 

supplementation with the SCFA propionic acid increased T regulatory cells and ameliorated EAE 

(316). In contrast, long chain fatty acid (LCFA) lauric acid had the opposite effect (316). As a 

proof of concept study, propionic acid supplementation was implemented in a small cohort of MS 

patients. The treatment regimen called for 1g of oral propionic acid supplementation daily. Results 

showed that as compared to controls, supplementation with oral propionic acid increased Treg- 

and decreased Th17-cell frequencies (317). Aside from SCFAs, bacterial products that can activate 

toll like receptors (TLRs) also influence EAE. While there are conflicting reports regarding the 

relative contribution of specific TLRs in EAE, there is evidence showing that knockout of TLR4 

in CD4+ T cells was protective (318). In addition, global knockout of TLR2, TLR9, and MyD88 

also ameliorated disease (319). Taken together, these data and those previously discussed point to 

a role of the microbiome in EAE pathogenesis and supports the investigation of the microbiome 

as a potential therapeutic target in MS.  

3.1.3  Study Overview 

Given the relationship between the intestinal microbiome and Th17 cells and the role of 

each of these factors in MS/EAE, we investigated the significance of enteric IL-17R signaling in 
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EAE using intestinal specific IL-17 receptor knockouts (Il17rafl/fl x villin cre+ mice). We 

hypothesized that disruption of the reciprocal regulatory relationship between enteric IL-17 

signaling and the gut microbiota leads to dysbiosis, expansion of Th17 cells, and increased 

predisposition to autoimmune neuroinflammation. Our data suggested that Il17rafl/fl x villin cre+ 

mice, which have higher Sfb levels, exhibited earlier EAE onset and increased EAE incidence and 

severity as compared to littermate Il17rafl/fl controls. Treatment with vancomycin ameliorated 

disease, further supporting our hypothesis. Disease exacerbation was accompanied by systemic 

increases in IL-17 and GM-CSF responses. In addition, preliminary data indicated that Il17rafl/fl x 

villin cre+ mice have increased intestinal expression of Csf2, Ccr2, and Ccr6 and increased spinal 

cord expression of Nos2 immediately prior to disease onset. Together, this suggested that there 

could be increased migration into the CNS of Il17rafl/fl x villin cre+ mice, contributing to 

exacerbated disease. These studies elucidate how dysregulation of enteric IL-17R signaling and 

the commensal microbiota can contribute to the pathogenesis of MS and other autoimmune 

conditions. Moreover, it can provide insight into novel therapeutic strategies targeting the gut-

brain axis. 

3.2 Methods 

3.2.1  Experimental Model and Subject Details  

Mice 

All mouse work was performed in accordance with the Institutional Animal Care and Use 

Committees (IACUC) and relevant guidelines at the University of Pittsburgh, School of Medicine 
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(protocol #16109334). Il22ra2-/- mice were bred and housed at the UPMC Children’s Hospital of 

Pittsburgh. Il17rafl/fl and Il17rafl/fl x villin cre+ mice were generated at the UPMC Children’s 

Hospital of Pittsburgh by crossing Il17rafl/fl mice to Il17rafl/fl x villin cre+ mice. Both male and 

female age-matched mice from 6-10 weeks of age were used for all experiments. The 

aforementioned breeding strategy allowed for controls and knockout mice within each experiment 

to be littermates. Littermate age-matched males and females were randomly assigned to 

experimental groups. Both males and females were used within each group in order to account for 

sex-differences while maintaining littermate controls and sufficient n for statistical power. All 

mice were housed in pathogen-free conditions at the UPMC Children’s Hospital of Pittsburgh.  

 

Ex vivo cultures 

Ex vivo stimulation of splenocytes and lamina propria lymphocytes. Cells from 6-10-week-

old naïve Il17rafl/fl mice and Il17rafl/fl x villin cre+ mice were harvested and processed into single 

cell suspensions (protocol described below). In addition to detailed experiment-specific stimuli, 

cells were maintained at 37°C in Iscove’s Modified Dulbecco’s Medium (IMDM) with GlutaMAX 

Supplement (Gibco), 10% heat-inactivated fetal bovine serum, 100 units/mL of penicillin and 

streptomycin, and 0.3mg/mL of L-glutamine.  

 

Experimental Models 

Experimental autoimmune encephalomyelitis (EAE) was induced using myelin 

oligodendrocytes glycoprotein (MOG35-55) (Bio-Synthesis, Inc.) in complete Freund’s adjuvant 

(CFA) containing 100 µg M. tuberculosis strain H37Ra (Difco)  as well as pertussis toxin (Sigma-

Aldrich) (29). 
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3.2.2  Method Details 

Animal treatments 

ll17rafl/fl x villin cre+ and littermate control Il17rafl/fl mice were used for EAE experiments. 

Co-housed cre+ and cre- mice were separated and kept in separate cage 1 week before EAE 

induction. These mice were immunized at both sites on the hind flank with 100 µg peptide 

corresponding to the immunodominant epitope of myelin oligodendrocytes glycoprotein (MOG35-

55) (Bio-Synthesis, Inc.) in 200 µl CFA containing 100 µg M. tuberculosis strain H37Ra (Difco) as 

described previously (29). All immunized mice also received 200 ng of pertussis toxin (Sigma-

Aldrich) intraperitoneally on days 0 and 2. Mice severity scores for EAE were evaluated blindly 

according to the following scale: 1: flaccid tail; 2: impaired righting reflex and hind limb weakness; 

3: partial hind limb paralysis; 4: complete hind limb paralysis; 5: hind limb paralysis with partial 

fore limb paralysis; 6: moribund. 

 EAE was also induced after 2 weeks of vancomycin (0.5 g/L) in the drinking water ad 

libitum or control water treatment. Vancomycin or control water-treated ll17rafl/fl x villin cre+ mice 

were immunized as above. Mice were maintained on antibiotic water throughout EAE time course.  

Mice were also treated with 0.5mg/mouse Anakinra (Kineret) twice daily for 21 days 

beginning at day 0 of EAE and maintained throughout the disease course.  

 

qRT-PCR  

Spinal cords and intestines were harvested from 6-10-week-old littermate Il17rafl/fl and 

Il17rafl/fl x villin cre+ mice at the naïve state and day 9 post EAE induction. Tissues were 

homogenized in Trizol buffer (Life Technologies). Total RNA extraction was performed according 
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to Trizol manufacturer’s instructions. RNA was transcribed into cDNA using iScript reagent (Bio-

RAD) according to manufacturer’s instructions.  

For qRT-PCR, SYBR Green supermix (Bio-RAD) was used for analysis of small subunit 

ribosomal RNA gene (16S rRNA) expression. 16S primers included: forward: 

ACTCCTACGGGAGGCAGCAGT, reverse: ATTACCGCGGCTGCTGGC (47, 48, 192). 

SsoFast supermix (Bio-RAD) was used for qRT-PCR analysis with primers (Applied Biosystems) 

for mouse Hprt, Il17a, Csf2, Ccr2, Ccr6, Nox2, Il1b, and Il1rn. Expression of all genes was 

normalized relative to housekeeping gene mouse Hprt. Reaction: 95°C for 3 minutes, 49 cycles at 

95°C for 10 seconds (s) and 60°C for 30s. SYBR Green reactions also had an additional melt curve 

at the end of the reaction above: 60°C for 5s with +0.5°C increment every cycle up to 95°C.  

 

RNA sequencing 

Total RNA from terminal ileum (1-4 µg) of 6-week-old ll17rafl/fl x villin cre+ and littermate 

ll17rafl/fl control mice were used as starting material for deep sequencing using the in-house 

Illumina TrueSeq RNA Sample Preparation v2 Guide. Briefly, mRNA was purified with oligo-dT 

beads, fragmented with magnesium and heat-catalyzed hydrolysis, and used as a template for first- 

and second-strand cDNA synthesis with random primers. The cDNA 3’ ends were adenylated, 

followed by adaptor ligation and a 15-cycle PCR to enrich DNA fragments. Quantification of 

cDNA libraries were performed by using Kapa Biosystems primer premix kit with Illumina-

compatible DNA primers. The cDNA libraries were pooled at a final concentration 1.8 pM. Single-

read sequencing was performed on Illumina Genome Analyzer IIx and NextSeq 500.  

 

 



 99 

Lamina propria lymphocyte isolation 

Briefly, 10 cm pieces of terminal small intestine were separated from mesentery and 

Peyer’s patches were carefully excised. Tissues were opened longitudinally and washed with 

HBSS. Epithelial cells were separated from lamina propria by incubating 1 cm pieces of small 

intestine in 5 mM EDTA on a shaker (100 rpm) for 10 minutes. Tissue were washed with HBSS 

without EDTA until supernatant was not cloudy. Tissues were cut into small pieces and incubated 

for 10 minutes at 370C in HBSS containing 0.3 mg/ml collagenase, 0.1 mg/ml DNase, 1 mM CaCl2 

and 1 mM MgCl2. 10% FBS was added and digested tissue suspension was filtered using 70-

micron cell strainer. After centrifugation, digested tissue pellet was re-suspended with 44% percoll 

and layered over 67% percoll. Mononuclear cells were isolated from an interphase of percoll 

gradients, washed, and resuspended for downstream applications. 

 

Splenocyte Isolation 

Spleens were harvested from mice into Iscove’s Modified Dulbecco’s Medium (IMDM) 

with GlutaMAX Supplement (Gibco), 10% heat-inactivated fetal bovine serum, 100 units/mL of 

penicillin and streptomycin, and 0.3mg/mL of L-glutamine (“Complete Media”). Spleens were 

then crushed and passed through a 70μm filter into a 50ml conical tube. Cells were washed with 

serum-free media. RBC lysis was performed. Cells were then washed 2x in complete media 

described above and resuspended for downstream applications. 

 

Flow cytometry 

 Small intestine lamina propria lymphocytes were isolated from littermate Il17rafl/fl and 

Il17rafl/fl x villin cre+ mice as described above. Single cell suspensions were stained with 
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eBiosciences antibodies against CD3 (17A2) and CD4 (RMA4-5) in a 96 well round bottom plate 

in the dark on ice for 20 minutes. Cells were washed 2.5x in cold FACS Buffer (0.5% FBS/0.01% 

NaN3/PBS), then fixed using BD Cyto-fix and incubated in the dark on ice for 20 minutes. Cells 

were washed and resuspended in PBS or FACS buffer and analyzed using the BD LSR II flow 

cytometer and FlowJo Software. 

 

ELISPOT 

MOG-specific IL-17A-producing T cells from the spleen of day 9 EAE induced mice were 

enumerated using peptide-driven ELIS POT. Briefly, 96-wells ELISPOT plates were coated with 

monoclonal anti-mouse IL-17, blocked with media containing 10% FBS. Cells from spleen were 

seeded at an initial concentration of 5×105 cells/well and subsequently diluted two-fold. Irradiated 

B6 splenocytes were used as APCs at a concentration of 1×106 cells/well in the presence of MOG 

(10 μg/ml) peptide. After 24 hours, plates were washed and probed with biotinylated anti-mouse 

IL-17. Spots were visualized and enumerated using a CTL-Immunospot S5 MicroAnalyzer and 

corrected with CD4 T cells number. Absolute CD4+ T cells percentage and number were 

determined by using flow cytometry and cells count. No spots were detected in cultures lacking 

antigen or when using cells from uninfected mice.  

 

Ex vivo cell stimulations 

Splenic and small intestine lamina propria lymphocytes were isolated as described above. 

Cells were plated at a concentration of 5 x 105 or 1 x 106 cells per well in a 96-well round bottom 

plate. Cells were then stimulated with various conditions at 37°C for the detailed incubation times.  
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Lamina propria lymphocytes were isolated from day 9 MOG immunized ll17rafl/fl x villin 

cre+ and littermate control ll17rafl/fl control mice, and re-stimulated with MOG peptide (200 µg/ml) 

for 24 hours. Cell culture supernatants were analyzed for GM-CSF using BioLegend mouse GM-

CSF ELISA kit as per manufacturer’s instruction (BioLegend).  

Splenocytes were isolated at the naïve state and day 9 post immunization of MOG-CFA or 

OVA-CFA. Cells were stimulated with MOG peptide (200ug/mL), OVA protein (200ug/mL), or 

anti-CD3/CD28 for three days. Supernatants were harvested and cytokine levels were measured 

via ELISA or Luminex. 

 

ELISA and Luminex Assays 

Cytokines from serum and cell culture supernatants were measured using the following 

ELISA or Luminex kits according to the manufacturer’s instructions: Mouse-IL-17 ELISA MAX 

Kit (BioLegend), Mouse GM-CSF ELISA MAX Kit (BioLegend), MILLIPLEX Mouse Th17 

Magnetic Bead Panel (Millipore Sigma), and Cytokine & Chemokine 36-Plex Mouse Procarta 

Plex Panel 1A (Thermo Fisher Scientific-Affymetrix), Human IL-1RA ELISA (Ebioscience).  

3.2.3  Quantification and Statistical Analysis 

Intestinal RNA sequencing 

Raw reads from Illumina NextSeq500’s in fastq format were trimmed to remove 

adaptor/primer sequences. Trimmed reads were then aligned using BWA (version 0.5.9, settings 

aln -o 1 -e 10 -i 5 - k 2 -t 8) against the mouse genome build 37.2 in geneSifter Analysis Edition 

for Next Generation Sequencing (Geospiza, Seattle, WA). Additional alignment and post-

processing were done with Picard tools (version 1.58) including local realignment and score 
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recalibration to generate a finale genomic aligned set of reads. Reads mapping to the genome were 

characterized as exon, intron, or intergenic using the matched annotation for the genomic reference 

sequence. The remaining unmapped reads from the genomic alignment were then aligned to a 

splice reference created using all possible combinations of known exons and then categorizing 

these as known or novel splice events. This aligned data was then used to calculate gene expression 

by taking the total of exon and known splice reads for each annotated gene to generate a count 

value per gene. For each gene there was also a normalized expression value generated in two ways: 

1) Reads per Mapped Million (RPM), which was calculated by taking the count value and dividing 

it by the number of million mapped reads, 2) Reads per Mapped Million per Kilobase (RPKM), 

which was calculated by taking the RPM vale and dividing it by the kilobase length of the longest 

transcript for each gene. The RPM values were subsequently used for comparing gene expression 

across samples to remove the bias of different numbers of reads mapped per sample. RPKM values 

were subsequently used for comparing relative expression of genes to one another to remove the 

bias of different numbers of mapped reads and different transcript lengths.  

 

Statistical Tests 

Statistical tests used are indicated in the figure legends. Data are presented as mean with 

individual samples visualized or mean + SEM. To compare differences between two groups, 

student-T test or non-parametric Mann-Whitney test was used depending on the distribution of the 

data. When comparing one variable in three or more groups, one-way ANOVA with multiple 

comparisons was used. When comparing multiple variables among two groups, two-way ANOVA 

with multiple comparisons or multiple T-tests per row was used. GraphPad Prism software was 
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used to analyze experimental groups. For all data, statistically significant was defined as p<0.05. 

The degree of statistical significance was defined as: p<0.05*, <0.01**, <0.001***, <0.0001****. 

 

Analysis Software 

GraphPad Prism was used for statistical analysis described above. Image J was used for 

histology analysis. BWA (version 0.5.9) in geneSifter Analysis Edition for Next Generation 

Sequencing (Geospiza, Seattle, WA) and Picard tools (version 1.58) were used for RNA 

sequencing analysis. 

3.2.4  Data and Software Availability  

The raw RNA sequencing data have been deposited into the sequencing read archive under 

SRA accession number SRP069071.  

Figure cartoons within this chapter were images adapted from Servier Medical Art by 

Servier. Original images are licensed under a Creative Commons Attribution 3.0 Unported License 

(https://creativecommons.org/licenses/by/3.0/legalcode). 

3.3 Results 

3.3.1  Disruption of enteric IL-17RA signaling exacerbates neuroinflammation. 

To investigate how intestinal IL-17 signaling regulates neuroinflammation, we induced 

experimental autoimmune encephalomyelitis (EAE) in intestinal epithelium-specific Il17ra 
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knockout mice (Il17rafl/fl x villin cre+) (48).  Knockout  mice and littermate l17rafl/fl controls were 

treated with subcutaneous injections of myelin oligodendrocyte glycoprotein (MOG) in complete 

Freund’s adjuvant along with intraperitoneal injections of pertussis toxin (PTx) given at day 0 and 

2 post immunization as described in Figure 3-2A.  

It has been previously shown that globally deleting Il17ra is protective in this model of 

EAE (126). Interestingly, deleting Il17ra signaling specifically in the intestinal epithelium 

exacerbated disease (Figure 3-2B). As compared to littermate Il17rafl/fl controls, Il17rafl/fl x villin 

cre+ mice exhibited earlier onset and increased clinical severity (Figure 3-2B). This correlated 

with an increase in proinflammatory cytokine production in the terminal ileum and serum as 

measured at the transcript and protein level prior to disease onset (day 9 post immunization) 

(Figure 3-2C-F). More specifically, there were increases in terminal ileum (TI) Il17a and Csf2 

(encodes GM-CSF) transcript (Figure 3-2E-F), but only significant differences in serum GM-CSF 

(Figure3-2D). Together, these data showed that disruption of intestinal IL-17RA signaling 

exacerbated disease potentially due to aberrant systemic cytokine responses reflective of cytokine 

changes observed in the intestine.  

Multiple IL-17 family cytokines signal through IL-17RA. IL-17A and IL-17F bind to IL-

17RA only through a multimeric receptor with IL-17RC (15). In order to test whether exacerbated 

disease is specifically due to IL-17A and F signaling, we induced EAE in Il17rcfl/fl x villin cre+ 

mice. Compared to littermate floxed controls, gut specific IL-17RC knockout mice appeared to 

have worse, but not significantly exacerbated disease (Figure 3-3A). In addition, disease onset was 

identical for both knockouts and controls (Figure 3-3A). This suggested that IL-17A and IL-17F 

may affect disease severity but not onset. Because knockout of intestinal IL-17RC did not 
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exacerbate disease to the same severity as IL-17RA, it also implicates other IL-17 family members 

such as IL-25 (320)in disease progression.  

 

 

Figure 3-2 Disruption of enteric IL-17RA signaling exacerbates neuroinflammation. 

(A) Schematic of experimental autoimmune encephalomyelitis (EAE) model. (B) Data shown are EAE severity score 

in  Il17rafl/fl x villin cre+ (n = 8) mice and littermate Il17rafl/fl controls (n = 6).  (C-D) Il17rafl/fl x villin cre+ and 

littermate Il17rafl/fl control mice serum were harvested on day 9 after MOG immunization. Serum IL-17A and GM-

CSF concentrations were determined in the serum by Luminex assay.  (E-F) Terminal ileum of  Il17rafl/fl x villin cre+ 

and littermate Il17rafl/fl mice were harvested on day 9 post EAE induction and analyzed for Il17a and Csf2 expression 

by qRT-PCR.  p<0.05*, <0.01**, <0.001***, <0.0001**** (Mann-Whitney Test, Unpaired T Test for Area Under the 

Curve) 
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Figure 3-3. Moderately exacerbated EAE in Il17rcfl/fl x villin cre+ mice is microbiome-dependent. 

(A) EAE severity score in  Il17rcfl/fl x villin cre+ (n = 8) mice and littermate Il17rcfl/fl controls (n = 7).  (B) Il17rcfl/fl x 

villin cre+ mice were treated with and without vancomycin (0.5g/L) in the drinking water ad libitum for two weeks 

followed by EAE induction. EAE severity scores in water control (n = 2) or vancomycin-treated  (n = 3) Il17rcfl/fl x 

villin cre+ mice. p<0.05*, <0.01**, <0.001***, <0.0001**** (Unpaired T Test for Area Under the Curve) 
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3.3.2  Disease in Il17rafl/fl x villin cre+ mice is microbiome-dependent. 

We next tested whether disease in Il17rafl/fl x villin cre+ mice was dependent on the 

microbiome. Literature showed that segmented filamentous bacteria (Sfb) induced intestinal Th17 

responses (60). In Il17rafl/fl x villin cre+ mice, we found an overgrowth of Sfb and discovered that 

IL-17 worked to constrain the Sfb population in  a reciprocal regulatory relationship (48). Because 

Sfb is a gram-positive bacteria, we focused our investigation of the microbiome on this group of 

bacteria. For two weeks prior to EAE induction, mice were given vancomycin (0.5g/L) in the 

drinking water ad libitum to target gram-positive bacteria. Antibiotic treatment abrogated disease 

(Figure 3-4A, Figure 3-3B) along with intestinal levels of Sfb, Il17a, and Csf2 (Figure 3-4B-D). 

This suggested that disease in Il17rafl/fl x villin cre+ mice was microbiome-dependent potentially 

due to microbiome regulation of Il17a and Csf2. 
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Figure 3-4. Disease in Il17rafl/fl x villin cre+ mice is microbiome-dependent. 

 Il17rafl/fl x villin cre+ mice were treated with and without vancomycin (0.5g/L) in the drinking water ad libitum for 

two weeks followed by EAE induction. (A)  EAE severity scores in water control (n = 7) or vancomycin-treated  (n = 

7) Il17rafl/fl x villin cre+ mice. (B-D) Terminal ilea of water control or vancomycin treated Il17rafl/fl x villin cre+ mice 

were harvested on day 9 after MOG-CFA immunization. Terminal ileum Sfb (B), Il17a (C), and Csf2 (D) gene 

expression were analyzed by qRT-PCR. p<0.05*, <0.01**, <0.001***, <0.0001**** (Mann-Whitney Test, Unpaired 

T Test, Area Under the Curve) 

3.3.3  Il17rafl/fl x villin cre+ mice exhibit increased splenic IL-17 responses and increased 

antigen-specific GM-CSF responses. 

Because the differences in disease severity occurred very early in the disease course, we 

hypothesized that there may be an increase in circulating effectors by disease onset. To test if there 

were increased antigen-specific effector responses prior to disease onset, we sacrificed the mice at 

day 9 post immunization when clinical disease scores were still zero. ELISPOT analysis of splenic 

CD4+ T cells showed there was not a significant increase in the number of splenic MOG-specific 

IL-17A+ cells (Figure 3-5A). In addition, we assessed the amount of cytokine produced by ELISA. 

Ex vivo stimulation of bulk splenocytes with MOG and negative control ovalbumin (OVA) showed 

no difference in the amount of antigen-specific IL-17 in culture supernatants (Figure 3-5B). To 
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validate this with another antigen, mice were immunized with CFA-OVA instead of CFA-MOG 

as detailed Figure 3-2A. Ex vivo OVA restimulation of splenocytes taken at day 9 post 

immunization replicated these findings (Figure 3-5C), confirming that Il17rafl/fl x villin cre+ mice 

did not exhibit increased splenic IL-17 responses specific to the antigen used in immunization. 

However, when splenic T cells taken from naïve mice were non-specifically stimulated with anti-

CD3/CD28, there was a significant increase in the amount of IL-17 produced (Figure 3-5D). 

Together, this suggested that while there was not an increase in MOG-specific IL-17 responses, 

there was an increase in general splenic IL-17A production. Because there was also an increase in 

serum GM-CSF at day 9 post immunization (Figure 3-2D), similar assays were performed to assess 

antigen specific GM-CSF production. Interestingly, increased antigen-specific GM-CSF was 

observed in both the intestinal lamina propria and in the spleen at day 9 post immunization (Figure 

3-5E-F).  
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Figure 3-5 Il17rafl/fl x villin cre+ mice exhibit increased splenic IL-17 responses and increased antigen-specific 

GM-CSF responses. 

(A-B) Splenocytes from Il17rafl/fl and Il17rafl/fl x villin cre+ mice were isolated 9 days post myelin oligodendrocyte 

glycoprotein (MOG)-CFA immunization. (A) MOG specific IL-17 producing CD4+ T cells were measured by 

ELISPOT. (B) Bulk splenocytes were stimulated for ex vivo with media (unstimulated control), MOG, or ovalbumin 

(OVA) as a negative control. IL-17A was measured in culture supernatants by ELISA. (C, F) Splenocytes from 

Il17rafl/fl and Il17rafl/fl x villin cre+ mice were isolated 9 days post-OVA-CFA immunization and stimulated ex vivo 

with media (unstimulated control), OVA, or MOG as a negative control. (C) IL-17A was measured in culture 

supernatants by ELISA. (D) Splenocytes from naïve Il17rafl/fl and Il17rafl/fl x villin cre+ mice were isolated and 

stimulated ex vivo with media (unstimulated control) or anti-CD3/CD28. IL-17A was measured in culture supernatants 

by ELISA. (E) Small intestine lamina propria lymphocytes from Il17rafl/fl and Il17rafl/fl x villin cre+ mice were isolated 

9 days post myelin MOG-CFA immunization and stimulated ex vivo with media (unstimulated) or MOG. GM-CSF 

was measured in culture supernatants by ELISA. (F) GM-CSF in culture supernatants following stimulation described 

in (C). p<0.05*, <0.01** (Unpaired T Test, Two-way ANOVA with multiple comparisons) 
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3.3.4  Il17rafl/fl x villin cre+ disease exacerbation is IL-1β-independent. 

Pathogenic Th17 cells implicated in EAE characteristically double produce IL-17 and GM-

CSF (28, 30). Specific inflammatory signals favor the differentiation of these pathogenic Th17 

cells (Table 1-2). One of those factors is IL-1β (28). Previous data suggested that IL-1β was 

detrimental in EAE (305, 306). In Il17rafl/fl x villin cre+ mice, Il1b expression was increased by 

RNA sequencing in the terminal ileum at the naïve state and by qRT-PCR at day 9 post 

immunization (Figure 3-6A-B). In addition, transcript of Il1rn, which encodes for IL-1R antagonist 

(IL-1RA), was decreased at day 9 post immunization (Figure 3-6C). IL-1RA competitively inhibits 

binding of IL-1β to the IL-1 receptor (321). Because Il1b was increased and regulation of IL-1 was 

decreased based on Il1rn expression, we hypothesized that disease exacerbation was dependent on 

IL-1 promotion of pathogenic Th17 differentiation. To test this hypothesis, anakinra, the 

pharmaceutical name for IL-1RA, was injected into Il17rafl/fl x villin cre+ mice twice daily for 21 

days starting at immunization (Figure 3-6D). Contrary to our hypothesis, disease severity with 

treatment was unaltered compared to control treatment (Figure 3-6E). Due to previously 

documented concerns about drug half-life, a serum IL-1RA ELISA was performed to assess levels 

of IL-1RA prior to each of the two doses given per day. This confirmed that anakinra was indeed 

present systemically prior to each dose in the treated mice as compared to PBS-injected controls 

(Figure 3-6F). As expected, there was a higher level of drug on board prior to the PM dose as 

compared to the AM dose due to the smaller break between doses (Figure 3-6F). These data 

confirm that disease exacerbation in Il17rafl/fl x villin cre+ mice was not dependent on IL-1β 

signaling.     
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Figure 3-6 Il17rafl/fl x villin cre+ disease exacerbation is IL-1β-independent. 

(A) RNA sequencing was performed on the terminal ileum of naïve Il17rafl/fl and Il17rafl/fl x villin cre+ mice. Data 

shows Il1b expression. (B-C) Terminal ileum Il1b and Il1rn expression was measured by qRT-PCR in Il17rafl/fl and 

Il17rafl/fl x villin cre+ mice at the naïve state and 9 days post EAE immunization. (D-F) Il17rafl/fl x villin cre+ mice were 

treated with intraperitoneal (IP) Anakinra (IL-1RA) or PBS control injection twice daily for 21 days beginning on day 

0 of EAE induction. (D) Experiment schematic. (E) EAE disease severity scores. (F) IL-1RA was measured by ELISA 

on serum harvested prior to the AM and PM dose of anakinra. p<0.05*, <0.01**, <0.001***, <0.0001**** (Unpaired 

T Test,  Area Under the Curve, Two-Way ANOVA with multiple comparisons) 
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3.3.5  Il17rafl/fl x villin cre+ mice have increased intestinal Ccr2 and Ccr6 and spinal cord 

Nos2 prior to EAE onset. 

In addition to its function as a granulocyte and macrophage growth factor, GM-CSF has 

been shown to promote activation and infiltration of immune cells into the CNS during EAE. 

Indeed, GM-CSF deficient mice exhibited less severe EAE with less CNS myeloid cell infiltration 

(304, 308). In addition, GM-CSF can promote IL-23 production by dendritic cells to perpetuate a 

cycle of Th17 effector generation and activation (27). In Il17rafl/fl x villin cre+ mice, there is 

evidence of increased intestinal GM-CSF (Figure 3-2, 3-5). To explore these potential effects of 

GM-CSF within the gut specific knockout mice during EAE, intestinal Ccr2 expression, an 

inflammatory macrophage marker, was measured via qPCR at day 9 post immunization. There 

were significantly increased expression levels in Il17rafl/fl x villin cre+ mice as compared to 

littermate floxed controls (Figure 3-7A). Knockout mice also exhibited increased intestinal Ccr6 

(Figure 3-7B), a marker highly expressed by Th17 cells, though this may simply be due to the Sfb 

overgrowth previously mentioned. Expression of these genes were also measured in the spinal cord 

9 days after immunization. Ccr6 expression was undetectable (Figure 3-7C), but there were trends 

toward increased Ccr2 (Figure 3-7D) and significantly increased Nos2 (Figure 3-7E). Nos2 is 

expressed on proinflammatory M1 macrophages, suggesting there may be increased 

proinflammatory macrophages in the spinal cord already at day 9 post immunization.  

To assess what may be occurring during vancomycin-mediated protection, Il17rafl/fl x villin 

cre+ terminal ileum and spinal cord gene expression were measured by qRT-PCR at day 9 post 

immunization under vancomycin treatment. Ccr2, Ccr6, and Cd4 were all decreased in the 

terminal ileum (Figure 3-7F-H). In the spinal cord, there were trends toward decreased Cd4 

expression (Figure 3-7I). At the cellular level, the increase in small intestine lamina propria CD4+ 
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T cells during EAE was reduced by vancomycin treatment to levels similar to naïve mice (Figure 

3-7J-K). While additional experiments are certainly necessary to validate these findings and 

demonstrate causation, these preliminary data suggest that there may be increased spinal cord 

immune infiltration potentially due to a microbiome-dependent increase of intestinal immune cells.   
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Figure 3-7 Il17rafl/fl x villin cre+ mice have increased intestinal Ccr2 and Ccr6 and spinal cord Nos2 prior to 

EAE onset. 

(A-E) Terminal ilea and spinal cords were harvested from Il17rafl/fl and Il17rafl/fl x villin cre+ mice 9 days post-MOG-

CFA immunization. Terminal ileum (TI) Ccr2 (A) and Ccr6 (B) were measured by qRT-PCR. Spinal cord Ccr6 (C), 

Ccr2 (D), and Nos2 (E) were measured by qRT-PCR. (F-K) Il17rafl/fl x villin cre+ mice were treated 2 weeks with 

vancomycin in the drinking water ad libitum followed by MOG-CFA immunization. Mice were sacrificed at 9 days 

post immunization. (F-H) Terminal ileum Ccr2 (F), Ccr6 (G), and Cd4 (H) was measured by qRT-PCR. (I) Spinal 

cord (SC) Cd4 was measured by qRT-PCR. (J) Quantification of lamina propria (LP) CD4+ T cells as measured by 

flow cytometry. (K) Representative FACS plots. p<0.05*, <0.01**, <0.001***, <0.0001**** (Mann-Whitney Test, 

Unpaired T Test, One-way ANOVA with multiple comparisons) 
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3.4 Discussion 

Our results provide evidence that perturbation of intestinal IL-17 signaling is sufficient to 

exacerbate neuroinflammation. Abrogation of intestinal IL-17RA disrupted the intestinal 

microbiota and increased intestinal Il17 and Csf2 and systemic responses in both cytokines. 

Preliminary data also suggested a potential increase of inflammatory monocyte infiltration into the 

CNS, together exacerbating disease.  

As previously mentioned, Th17 cells have been previously implicated in EAE and MS as 

a detrimental factor. In mice, global knockout of IL-17RA was protective (126). However, the role 

of Th17 cells in autoimmune neuroinflammation is complex. By using Il17rafl/fl x villin cre+ mice, 

we again uncoupled intestinal IL-17RA signaling from systemic signaling to reveal a novel 

protective role of IL-17RA in neuroinflammation. This protection was accompanied by an increase 

in terminal ileum Csf2. This aligned with other reports on the pathogenicity of GM-CSF within 

this model  (303, 304). It also raises the possibility of the intestine as a source of pathogenic GM-

CSF within EAE and MS. The intestine does play a large role in the regulation of Th17 cells (322). 

Moreover, a recent study showed an upregulation of Th17 cells with intestines of MS patients 

(309). As such, it is possible that pathogenic Th17 cells that are detrimental in EAE can also arise 

from the intestine. These data may also help explain why there is only partial protection conferred 

by IL-17A deficiency or anti-IL-17A neutralization (298, 299). This partial protection may suggest 

a role for other Th17 related cytokines, or that IL-17 expression is associated with a gene module 

that allows traffic into the brain but is not critical for direct CNS damage. Our data suggest that 

the protective effects of blockade may also be diminished as a result of intestinal IL-17 signaling 

disruption with downstream consequences detrimental to neuroinflammation. Alternatively, 
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differences in results could be due to institutional differences in the intestinal microbiome of the 

respective mice.  

Our data showed that vancomycin treatment conferred protection in Il17rafl/fl x villin cre+ 

mice, implying a role of gram-positive bacteria in EAE. A gram-positive targeted antibiotic 

approach was employed to eliminate the bacteria we believed the most likely contributor in our 

model—Sfb. We previously showed that Sfb was overgrown in Il17rafl/fl x villin cre+ mice (48) 

and as expected, vancomycin treatment decreased the intestinal Sfb burden. These data corroborate 

with another report that monocolonization with Sfb in germ-free mice is sufficient to exacerbate 

EAE compared to germ-free mice (313). However, monocolonization with Sfb did not restore full 

susceptibility to EAE as compared to conventional SPF mice (313), implying a role of other 

bacteria in disease pathogenesis or that Sfb requires cooperation with other bacteria to exert its 

effects. This may explain why a report by Stockinger and colleagues showed that mice 

reconstituted with feces with high Sfb levels had no effect on EAE as compared to disease in mice 

reconstituted with low-Sfb feces (323). It is possible the “Sfb+” feces lacked the bacterial strains 

with which Sfb coordinates. Alternatively, it may have additional strains protective in EAE. With 

that said, it cannot be ruled out that there are other microbiota differences in Il17rafl/fl x villin cre+ 

mice that may exacerbate disease. Indeed, intestinal Th17 signaling is especially important for 

controlling microbes close to the intestinal epithelium. Similarly, it also cannot be ruled out that 

there are other bacteria that can induce pathogenic Th17 responses. In humans, Honda and 

colleagues identified a consortium of 20 bacterial strains capable of adhering to the mouse 

intestinal epithelium to induce a robust Th17 response (36). Vancomycin-mediated protection 

from EAE was accompanied by a decrease in intestinal Il17a and Csf2, suggesting that the 

microbiome may worsen disease through the intestinal regulation of these two cytokines.  
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When investigating the systemic responses of these cytokines, Il17rafl/fl x villin cre+ mice 

exhibited increased non-specific IL-17 responses. These responses may contribute disease through 

the bystander effect. The bystander effect refers to the non-antigen-specific activation of cells 

through other stimuli in the environment, which can in turn affect health and disease (324). Indeed, 

it has been shown that non-myelin specific bystander T cells can exacerbate EAE pathology (324, 

325). Lee et al. showed that adoptive transfer of activated memory OTII CD4+ T cells with myelin-

specific 2d2 cells into RAG knockout mice induced more severe EAE as compared to transfer of 

2d2 cells alone (324). In Il17rafl/fl x villin cre+ mice, it is possible that the disruption of intestinal 

Th17 signaling and subsequent changes in the microbiome caused increased activation of Th17 

cells potentially from an altered intestinal cytokine milieu and microbiome-induced activation. 

Studies showed that non-specific activation with anti-CD3/CD28 induced a greater IL-17 response 

in memory cells as compared to naïve cells (324). This paralleled results in Il17rafl/fl x villin cre+ 

mice in which non-specific anti-CD3/CD28 stimulation of splenocytes from naïve Il17rafl/fl x villin 

cre+ mice produced more IL-17 compared to Il17rafl/fl controls. This may suggest that there are 

increased memory-like cells in Il17rafl/fl x villin cre+ mice.  

These activated Th17 cells can then act systemically to influence disease. Though 

discussed in more detail later, one possibility is that these cells may be migrating into the CNS to 

influence disease directly, especially since T cell activation is required to cross the BBB (291). A 

more likely possibility is that the inflammatory mediators produced/induced by the cells as 

opposed to the cells themselves can act on the blood brain barrier and promote immune cell 

infiltration. Indeed IL-17RA, IL-17RC, and IL-22R are expressed on the BBB cells. Both IL-17 

and IL-22, which is also increased in Il17rafl/fl x villin cre+ mice (48), promoted migration of CD4+ 

T cells across human BBB endothelial cells with specific enrichment of migrating CD45RO+ 
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memory cells and increases in CCL2 and CXCL8 (294). Furthermore, immunostaining of 

autopsied patient brain specimens revealed numerous CD45RO+ cells co-staining with IL-17 or 

IL-22 in infiltrated MS lesions (294). In EAE, preliminary experiments with IL-22 binding protein 

knockout mice (Il22ra2-/-), which have increased IL-22 signaling, are protected from disease 

(Figure 3-8), supporting a protective role of IL-22. Therefore, Th17-induced cytokines and 

chemokines may contribute to EAE exacerbation through these mechanisms.  

 

  

Figure 3-8. Il22ra2-/- mice are protected from EAE. 

EAE severity scores in wildtype (WT) B6 mice (n = 5) and Il22ra2-/- mice (n = 5). p<0.05*, <0.01**, <0.001***, 

<0.0001**** (Unpaired T Test for Area Under the Curve) 

 

While the presence of bystander cells can worsen EAE, they can only do so in the presence 

of MOG-specific cells (324). In our study, Il17rafl/fl x villin cre+ mice exhibited increased antigen-

specific GM-CSF responses. The increase in MOG-specific GM-CSF response was perhaps 

indicative of the increase in pathogenic Th17 cells detrimental in EAE. The increase of this 

response in the intestine suggests that the systemic elevations in GM-CSF may also originate from 
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the intestine. Elevation in MOG-specific splenic responses at day 9 post immunization aligns with 

other reports describing increased MOG-specific effector responses in the spleen during the 

priming phase of EAE (326). Interestingly, this antigen-specific response was not limited to MOG. 

Rather, OVA-CFA immunization prompted the same elevated splenic GM-CSF response. 

Therefore, while the specific antigen dictates the site of tissue damage (i.e. MOG and the CNS), 

in this case it appears to play less of a role in the type of cytokine response. This emphasizes that 

the type of response to a given antigen is largely dependent on the host environment, whether that 

be the state of the immune system, the microbiome, genetic susceptibility, or even the epigenetic 

landscape. Disruption of intestinal Th17 signaling appears to be fostering a host environment that 

promotes increased antigen-specific GM-CSF responses characteristic of pathogenic Th17 cells. 

Because IL-1β has been shown to promote pathogenic Th17 differentiation (30, 327) and 

was increased by gene expression in the intestine of Il17rafl/fl x villin cre+ mice, we hypothesized 

that it was a contributing factor to disease exacerbation. Contrary to some reports showing that IL-

1R1 and IL-1β were detrimental in EAE (305, 306), treatment with anakinra, IL-1R antagonist 

(IL-1RA) did not ameliorate disease in gut-specific knockouts. However, there are other cytokines 

that promote pathogenic Th17 differentiation—namely IL-23. Multiple reports have shown that 

IL-23 is critical for T cell-GM-CSF production in EAE  (27, 308). While IL-23 is not increased in 

Il17rafl/fl x villin cre+ mice at baseline, it is possible that IL-23 is increased during the disease 

course, which may be more important in the context of EAE. Indeed, IL-23 was found to be critical 

during the effector phase of EAE and not the initiation (27). This is consistent with previous reports 

showing high tissue expression of IL-23, which can enhance local CNS effector function to drive 

neuroinflammation (29). In addition, IL-23 can act on APCs to stimulate a positive feedback loop 

in which IL-23 promotes GM-CSF production in Th17 cells, and GM-CSF then promotes IL-23 
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production in APCs (27). As such, further characterization of IL-23 in Il17rafl/fl x villin cre+ mice 

during EAE and its relation to IL-17 and GM-CSF production is warranted.   

The increase in GM-CSF found in Il17rafl/fl x villin cre+ mice during EAE could contribute 

to immune activation and infiltration in to the CNS. More specifically, GM-CSF can activate 

microglia within the CNS and promote recruitment of circulating monocytes (303, 328, 329). In 

GM-CSF deficient mice, myeloid cells, which express the GM-CSF receptor, do not accumulate 

in the CNS (303, 304). Our preliminary data show that there is a vancomycin-sensitive increase in 

terminal ileum Ccr2 and Ccr6 with a corresponding increases in spinal cord Ccr2 and Nos2, a gene 

upregulated in proinflammatory M1 macrophages. While these changes may be association, the 

fact that gene expression in the spinal cord reflects the changes in intestine also poses the 

hypothesis that there could be immune cell trafficking from the intestine into the circulation and 

CNS.  

This preliminary data must be confirmed at the cellular level and additional studies must 

be done, but there is evidence in the literature that supports the possibility of intestinal migration 

to distant immunoprivileged sites. Though not in EAE, Caspi and colleagues showed that 

autoreactive T cells in experimental autoimmune uveitis were primed in the intestine, migrated to 

the eye, and were activated via molecular mimicry to contribute to ocular pathology (121). In 

addition, Benakis et al. showed that intestinal cells migrated to the meninges after a mouse model 

of ischemic stroke (247). Benakis et al. utilized KikGR33 mice that ubiquitously expressed a 

fluorescent protein whose emission changed from green to red after violet light exposure. These 

mice underwent a laparotomy and exposure to violet light only on the intestine, distinguishing 

cells of intestinal origin. Analysis following ischemic stroke showed intestinal red-emitting T cells 

in the meninges (247). However, a caveat to this study is exposing cells within the gastrointestinal 
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vasculature already in circulation. In addition to these studies, there are data showing that during 

EAE, encephalitogenic Th17 cells that produce GM-CSF switch from CCR6+CCR2- to CCR6-

CCR2+ (330). These cells were found in the CNS of mice already at day 5 post EAE immunization 

with increasing percentages observed at days 10 and 15 post immunization (330). Therefore, while 

the increase in spinal cord Ccr2 and Nox2 at day 9 post immunization in Il17rafl/fl x villin cre+ mice 

could be indicative of increased inflammatory monocyte infiltration, it could also be a result of 

Th17 cells switching from CCR6+ to CCR2+ cell. This may explain why there is a dramatic 

increase in Ccr2 and Ccr6 expression in the intestine at day 9 with undetectable spinal cord Ccr6 

and increased Ccr2.  

As previously mentioned, it may likely be the case that Th17 cells and other intestinal cells 

are not physically migrating into the CNS at all, but rather contributing to disease more indirectly 

via the bystander effect as discussed above. Our data leave open the possibility that cytokines, 

bacterial products and metabolites (316, 331), and other inflammatory mediators can be going 

from the intestine to the circulation and CNS. More locally, these factors can also act on the enteric 

nerves and affect disease in that way (246).  

These studies offer many future directions exploring other possibilities by which intestinal 

IL-17RA signaling could be contributing to neuroinflammation. As previously mentioned, 

bacterial metabolites can play a large role in disease development and could be altered due to the 

commensal dysbiosis in the gut specific knockouts. Alterations in the intestinal microbiome and 

microbial-derived SCFAs have been known to influence the intestinal Treg population (332). As 

such, characterization of the Treg population in Il17rafl/fl x villin cre+ mice may be important as 

well, especially since shifts in the balance of Tregs/Th17 have been linked to microbiome-

mediated effects on EAE (311–313). In terms of microbial product release into circulation, there 
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is no baseline defect in intestinal barrier integrity in Il17rafl/fl x villin cre+ mice. However, the 

barrier may be compromised after disease induction based on preliminary assessment of intestinal 

tight junction related genes (Figure 3-9). Increased permeability would allow for enhanced release 

of bacterial products including TLR ligands and SCFAs.  

 

 

Figure 3-9. Terminal ileum tight junction protein gene expression at day 9 post EAE immunization. 

Terminal ileum expression of Claudin 1 (Cldn1) (A), Claudin 2 (Cldn2) (B), Claudin 7 (Cldn7) (C), Claudin 8 (Cldn8) 

(D), Occludens (E), and Tight junction protein 1 (Tjp1)/ Zona Occludens 1 (ZO-1) (F)  as measured by qRT-PCR.  
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In addition to the intestinal barrier integrity, assessment of the integrity of the BBB in 

Il17rafl/fl x villin cre+ mice is critical, as there may not only be increased release and migration of 

cells and immune mediators into the circulation due to intestinal barrier defects but increased 

accessibility to the CNS due to BBB compromise. Finally, a more thorough investigation of 

pathogenic Th17 cells in the context of EAE in Il17rafl/fl x villin cre+ mice would be informative. 

Identifying their tissue of origin, what factors induce them (i.e. IL-23), and which cells ultimately 

migrate into the CNS will provide additional mechanistic insight into how intestinal Th17 

signaling can contribute to MS immunopathology. 

In summary, these studies support a novel protective role of intestinal Th17 signaling in 

autoimmune neuroinflammation. We show that mice with disrupted intestinal IL-17RA exhibited 

earlier EAE onset and increased EAE severity. The data suggest that disease exacerbation may be 

due to microbiome-mediated increases in pathogenic Th17 responses that promote CNS infiltration 

and worsened neuroinflammation. While more studies are necessary to validate these findings, this 

work elucidates potential mechanisms by which intestinal Th17 signaling and its relationship with 

the microbiome contribute to MS and other autoimmune pathologies. Moreover, it exposes novel 

therapeutic avenues targeting the gut-brain axis to ultimately improve patient health.   
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3.5 Working Model 

 

Figure 3-10. Working Model 

In Il17rafl/fl x villin cre+ mice, where IL-17RA signaling is knocked out specifically in the intestinal epithelium, there 

was intestinal overgrowth of Sfb due to the lack of Th17-mediated regulation. Because of the reciprocal regulatory 

relationship between Th17 cells and Sfb, Sfb overgrowth induced intestinal IL-17 and increased non-pathogenic Th17 

cells. We hypothesize that the cytokine response to immunization with myelin oligodendrocyte glycoprotein (MOG) 

in Complete Freund’s adjuvant (CFA) partnered with microbiome-mediated cytokine changes promoted a switch from 

non-pathogenic to pathogenic Th17 cells that double produce IL-17 and GM-CSF. These two cytokines can then act 

systemically in a non-specific fashion to promote blood brain barrier weakening, recruitment and activation of myeloid 

cells, and chemokine release in the CNS to enhance bystander lymphocyte infiltration to ultimately exacerbate 

neuroinflammation.  
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4.0 Overall Conclusions & Future Directions 

These dissertation studies investigated the role of intestinal Type 17 signaling and the 

microbiome in extra-intestinal pathologies, specifically focusing on the gut-liver and gut-brain 

axes. Both studies utilized in Il17rafl/fl x villin cre+ mice to knockout IL-17RA signaling in the 

intestinal epithelium, uncoupling intestinal IL-17RA signaling from systemic signaling to reveal 

novel protective roles. In mouse models of liver and neuroinflammation, these works demonstrated 

how disruption of intestinal Th17 signaling and subsequent alterations in the intestinal microbiome 

were capable of exacerbating disease at distal sites.  

In the gut-liver axis, abrogation of intestinal IL-17RA was sufficient to worsen disease in 

a Con A mouse model of T cell-mediated hepatitis. More specifically, naïve Il17rafl/fl x villin cre+ 

mice exhibited microbiome dysbiosis and increased translocation of bacterial products (CpG 

DNA) to the liver, driving hepatic IL-18 production. Upon disease induction, absence of enteric 

IL-17RA signaling exacerbated hepatitis and hepatocyte cell death. IL-18 was necessary for 

disease exacerbation and associated with increased activated hepatic lymphocytes based on Ifng 

and Fasl expression. From these studies, we concluded that intestinal IL-17R regulated the 

translocation of TLR9 ligands and constrained susceptibility to hepatitis. These data connect 

enteric Th17 signaling and the microbiome in hepatitis, with broader implications on the effects 

of impaired intestinal immunity and subsequent release of microbial products observed in other 

extra-intestinal pathologies. 

In the gut-brain axis, perturbation of intestinal IL-17RA was sufficient to worsen disease 

in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Our 

data suggested that Il17rafl/fl x villin cre+ mice, which have higher Sfb levels, exhibited earlier EAE 
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onset and increased EAE incidence and severity as compared to littermate Il17rafl/fl controls. 

Treatment with vancomycin ameliorated disease, suggesting that the phenotype was microbiome-

dependent. Disease exacerbation was accompanied by systemic increases in IL-17 and GM-CSF 

responses. In addition, preliminary data indicated that Il17rafl/fl x villin cre+ mice had increased 

intestinal expression of Csf2, Ccr2, and Ccr6 and increased spinal cord expression of Nos2 

immediately prior to disease onset. Together, this suggested that there could be increased migration 

into the CNS of Il17rafl/fl x villin cre+ mice, contributing to exacerbated disease. These studies 

elucidated how dysregulation of enteric IL-17R signaling and the commensal microbiota may 

contribute to the pathogenesis of MS and other autoimmune conditions. Moreover, it provides 

insight into novel therapeutic strategies targeting the gut-brain axis. 

Together, both studies emphasize the importance of examining intestinal Th17 immunity 

in extra-intestinal diseases and mucosal immunity in general. It reaffirms the concept that mucosal 

immunity is critical in disease protection, and that when it fails or is disrupted, systemic immunity 

is affected. Specific to liver and neuroinflammation, many patients with Th17-associated diseases 

including multiple sclerosis and autoimmune hepatitis present with intestinal symptoms even early 

in the disease course. While this may be only a consequence rather than a cause, our studies argue 

for a potential role of the intestine in perpetuating further disease development and exacerbation. 

Previous research has shown that the intestine is a major regulator of Th17 signaling (322). Our 

work has demonstrated that intestinal Th17 signaling can contribute to extra-intestinal disease via 

its regulation of the microbiome and downstream release of cytokines, chemokines, and other 

inflammatory mediators. This link between intestinal Th17 immunity and extra-intestinal disease 

is supported by other work detailing intestinal Th17 downstream effects in other organs. McAleer 

et al. showed that in pulmonary  Aspergillus fumigatus infection, gastrointestinal delivery of Reg3γ 
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conferred protection in an IL-22 dependent manner (333). Moreover, these Th17-induced 

antimicrobial peptides can also have effects on chemotactic activity and TLR responsiveness 

(334), adding to the potential systemic effects on health and disease.  Ultimately, our studies 

support the idea that intestinal Th17 signaling is capable of affecting extra-intestinal disease 

through various mechanisms. What is especially interesting about these dissertation studies is that 

while there are parallels between the two mechanisms exacerbating hepatitis and 

neuroinflammation in Il17rafl/fl x villin cre+ mice, each model actually implicates different aspects 

of Th17 cells and the microbiome.  

In each model, it appears that different Th17 cytokines are playing a role in disease 

exacerbation. One reason for this may be the differences in IL-17RA signaling in the small versus 

large intestine. As such, it would be helpful to isolate the various intestinal segments and evaluate 

immunologic changes as well as alterations in the microbiome within each segment. Based on the 

data, the EAE phenotype is likely connected at least in-part to small intestinal IL-17RA signaling 

given the effect of Sfb overgrowth (predominantly in the terminal ileum) in the EAE model. Our 

working model in EAE suggests an increase in pathogenic Th17 cells that are double producing 

GM-CSF and IL-17. This was seen in the intestine as well as in systemic responses during ex vivo 

stimulations. Both of these cytokines may then contribute to CNS immune infiltration and 

recruitment to exacerbate neuroinflammation via chemokine release, effects on myeloid cells, and 

disruption of the BBB. Conversely, IL-17RA signaling in the large intestine may have more of an 

effect in the hepatitis phenotype relative to the EAE phenotype due to the role of the colon in the 

enterohepatic circulation. During hepatitis, disease in Il17rafl/fl x villin cre+ mice was more so 

driven by general Th17 control of the microbiome and subsequent IL-18 release discussed in more 

detail below. Our data in Nlrc4mutIl18bp-/- mice, which have increased intestinal IL-18 production 
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and decreased systemic regulation of IL-18, also suggested a role of intestinal IL-18 in disease 

exacerbation. Il17rafl/fl x villin cre+ mice do have an increase in intestinal IL-18 as well as IL-22 

(48). These data align with evidence showing that IL-22 can drive IL-18 production by intestinal 

epithelial cells (161). The elevated IL-18 in Il17rafl/fl x villin cre+ mice then enhanced liver 

inflammation by promoting lymphocyte activation as measured by Ifng and cell death through Fas-

FasL. While it was not investigated, the elevated IL-18 in Il17rafl/fl x villin cre+ mice could be 

influencing EAE exacerbation as well. Indeed, there was increased IL-18 in the CSF and serum of 

MS patients with active MRI lesions. In mice, however, IL-18 deficiency had no effect while 

knockout of IL-18Rα was protective against EAE (335, 336). Taken together, our data highlight 

the different mechanisms by which intestinal Th17 cells and subsequent Th17 related cytokines 

can influence disease in different organs. Moreover, it prompts further investigation of intestinal 

Th17 signaling in extra-intestinal diseases.   

Based on antibiotic and cohousing studies, disrupted intestinal IL-17 signaling mediated 

its effects on hepatitis and neuroinflammation through the intestinal microbiota. The intestinal 

microbiota has been previously implicated in both the Con A and EAE. Indeed, in both models, 

germ-free mice exhibit ameliorated disease (178, 313). Il17rafl/fl x villin cre+ mice have an altered 

intestinal microbiome as previously described (48). Our data suggested that different bacteria 

within the Il17rafl/fl x villin cre+ microbiota are contributing to each disease model. In EAE, 

vancomycin, which targets gram-positive bacteria, ameliorated disease. Based on the literature, it 

is likely that the disease inciting bacteria in EAE was gram-positive bacteria, Sfb. There is a large 

Sfb overgrowth in Il17rafl/fl x villin cre+ mice due to the loss of Th17 control (48), and 

monocolonization with Sfb into germ-free mice was sufficient to exacerbate disease as compared 

to germ-free mice (313). Conversely, in Con A hepatitis, vancomycin had no effect on disease in 
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Il17rafl/fl x villin cre+ mice, while neomycin, which targets gram negative bacteria, ameliorated 

disease. This effectively shifted the focus away from Sfb within the Con A model and also 

suggested that intestinal IL-17RA signaling controlled more than Sfb. This is not surprising as the 

mechanisms by which Th17 cells control Sfb,  such as sIgA and AMPs, are also applicable to other 

bacteria residing close to the intestinal epithelium. Indeed, we have evidence showing general 

bacterial overgrowth in the fecal content of Il17rafl/fl x villin cre+ mice with enrichment for IgA- 

bacteria. The fact that different bacteria within the same organism are exacerbating different 

diseases provides further support that the effect of the microbiome is contextual. For example, the 

Sfb-mediated IL-17 responses in Il17rafl/fl x villin cre+ mice may be detrimental in EAE but 

protective in a setting of fungal infection (337). Still within Il17rafl/fl x villin cre+ mice, gram-

negative bacteria mediated IL-18 elevations, which exacerbated hepatitis but may prove beneficial 

in  colitis (160). This challenges the concept of a “healthy” microbiome, as the various bacteria 

within one host’s microbiome may be protective or detrimental depending on the disease process 

and co-existing microbial community.  

Beyond the specific bacteria, our data have demonstrated a role for bacterial product 

translocation in disease exacerbation. In Il17rafl/fl x villin cre+ mice, translocation of CpG DNA 

from the gut to the liver promoted local hepatic IL-18 production and exacerbated disease. While 

systemic increases in bacterial products were not seen at the naïve state, it is possible that disease 

progression both in Con A and EAE may have compromised the intestinal barrier to release 

bacterial products into the circulation. Though there are some conflicting reports, TLR2, TLR4 

and TLR9 have all been implicated in EAE (319, 338, 339) and could have an effect on disease in 

Il17rafl/fl x villin cre+ mice. Our data may also have implications on other illnesses with “leaky 

gut” and increased bacterial translocation. With regards to the translocation of TLR ligands, much 
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of the focus has been on LPS. For example, in HIV/AIDS, emphasis has been placed on leakage 

of LPS across the gut barrier causing wasting and chronic inflammation (181). Our data suggests 

extra-intestinal TLR9 ligand dissemination is regulated by intestinal IL-17R signaling and may 

therefore be another underlying mechanism in HIV/AIDS liver dysfunction (244). Our data also 

raise the possibility that intestinal Th17 dysregulation and subsequent bacterial translocation may 

also contribute neurological manifestations in HIV/AIDS. More broadly, our work reveals 

potential immune consequences of the subclinical bacteremia observed in many patients. 

With regards to future directions, it would be important to look beyond TLR ligands and 

address the potential role of bacterial metabolites, such as SCFAs, in Il17rafl/fl x villin cre+ disease 

exacerbation. It is likely that alterations in the intestinal microbiota within Il17rafl/fl x villin cre+ 

mice may have resulted in changes in the intestinal metabolome. SCFAs have been shown to have 

a wide range of immunologic functions including Treg induction, myeloid cell regulation, and 

inhibition of histone deacetylases (78, 79, 340, 341). The enhanced immune responses to ex vivo 

stimulation in both the Con A and EAE projects suggested that there may be epigenetic 

modifications in gut-specific knockout mice such that the splenocytes and hepatic mononuclear 

cells are primed to secrete more inflammatory cytokines in response to even non-specific stimuli 

such as anti-CD3/CD28. Moreover, ex vivo treatment with bromodomain extra-terminal protein 

inhibitors abrogated the enhanced liver IFNγ response, further supporting an epigenetic 

contribution.  

It would also advance the work to identify specific bacterial genera or species exacerbating 

Con A and EAE in Il17rafl/fl x villin cre+ mice. In EAE, vancomycin treatment partnered with the 

existing literature on Sfb in EAE focused the attention on Sfb. However, as seen in within the Con 

A project, Il17rafl/fl x villin cre+ mice exhibit an overall bacterial overgrowth. As such, it is possible 
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that additional bacteria beyond Sfb may be contributing to disease. Indeed, in the work 

monocolonizing germ-free mice with Sfb, EAE severity in Sfb-monocolonized mice did not reach 

the same level as conventional SPF mice (313). This suggested that other bacteria and microbial 

metabolites beyond Sfb contributed to disease or that Sfb requires other bacteria to exert its effects. 

To that end, following up on the elevated IgA-unbound bacteria in Il17rafl/fl x villin cre+ mice 

(detailed within the Gut-Liver Axis Chapter) may assist in identifying contributing bacteria in both 

the EAE and Con A models. To tailor the assay to identify the bacterial culprits in the EAE work, 

quantification of IgA-bound and unbound bacteria can be done after vancomycin treatment to 

determine if there is selective depletion of either subset. In addition, for both projects, the IgA 

bound and unbound fractions can be sorted via magnetic separation (194), sequenced, and analyzed 

for potential differences between Il17rafl/fl x villin cre+ mice and littermate floxed controls. That 

being said, the possibility still remains that it is not a specific bacterium, but rather changes in 

bacterial behavior or bacterial overgrowth of many species that could be enhancing disease.  

Overall, these dissertation studies have numerous therapeutic implications. It emphasizes 

that diseases are very often multifactorial, involving not just the target organ but other aspects of 

the body and immune system. As such, treatment of disease should reflect this multisystem 

involvement. Specifically in MS and hepatitis, our work raises intestinal Th17 signaling and the 

intestinal microbiome as therapeutic considerations when designing therapies. While IL-17 has 

been shown to be detrimental in both disease types, it is possible that global IL-17A blockade may 

have adverse effects on intestinal Th17 signaling with subsequent microbiome alterations and 

proinflammatory effects. Indeed, “gastrointestinal disorders” was one of the organ system 

groupings with adverse side effects in response to Secukinumab, the humanized anti-IL-17A 

monoclonal antibody approved for psoriasis (342). To address these potentially adverse effects, 
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our data support the investigation of combination therapy in these diseases. Partnering IL-17 

neutralization with blockade of other potentially pathogenic cytokines including IL-18 in hepatitis 

or GM-CSF in neuroinflammation may prove more effective. 

Our work also suggests the microbiome as a therapeutic target in these diseases. While the 

targeting the microbiome is unlikely to be a cure-all for these diseases, these dissertation studies 

demonstrate that it may be a exacerbating factor in disease development. Our data suggest the role 

of specific subtypes of bacteria in disease exacerbation. Based on our data with IgA-unbound 

bacteria enrichment potentially exacerbating hepatitis, a possible future therapy may be 

administration of secretory IgA specific to inciting bacteria in that particular disease state. As such, 

identification of bacteria detrimental in specific diseases can undoubtedly advance the field, 

particularly if the work becomes translatable to patients and proves helpful in disease management. 

However, an important caveat is that many previous studies have also defined other differences in 

the intestinal microbiota in patients and mouse models of these diseases. For example, in hepatitis, 

our work implicates a gram-negative bacteria in disease exacerbation and showed that eliminating 

gram-positive bacteria had no effect in Il17rafl/fl x villin cre+ mice. Another hepatitis mouse model 

using a different genetic background implicated a gram-positive bacterium (179). In MS, a meta-

analysis of the literature detailing the intestinal microbiome of patients with relapsing-remitting 

MS described multiple different bacteria that were altered in patients with RRMS patients as 

compared to controls (310). This study noted that many of these described differences were not 

shared among all of the reports (310). The variation in the “relevant” bacterial strains in disease 

highlight the biological differences observed in the microbiome, demonstrate the importance of 

performing studies to show cause as opposed to association, and stress the significance of gene-
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environment interaction, as these microbiota changes may stem from the genetic predisposition of 

the host.  

This type of variation certainly impacts the approach to targeting the microbiome in 

patients. For interventions such as fecal microbiota transfer, it would be important to consider the 

genetic predisposition of the host as well as what may be detrimental or beneficial in that specific 

health/disease state. Moreover, transferring of bacterial communities without first creating a niche 

may impede the success of the beneficial bacterial strain. Even then, the genetic predisposition of 

the host may prevent the more permanent establishment of the microbial communities of interest. 

Because of these challenges, it would be helpful to also go beyond identifying specific target 

strains and elucidate the mechanism by which these different bacteria contribute to disease. Doing 

so would then open up more therapeutic targets. For example, it may be more efficacious, though 

not necessarily sustained, to focus microbiota-related treatments to immunogenic bacterial 

products such as SCFAs. Overall, our studies partnered with those previously performed underline 

the role of the microbiome in extra-intestinal disease and the promising therapeutic avenue of 

targeting the microbiota.  

In summary, these dissertation studies demonstrate how disruption of intestinal Th17 

signaling and subsequent effects on the microbiome can exacerbate liver- and neuro-inflammation. 

The mechanisms by which this occurs further elucidate potential therapeutic targets in hepatitis 

and MS and have broader implications in mucosal immunity and the gut-brain and gut-liver axes.  
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